Conjugation of FtsK Trimer to Quantum Dots. Streptavidin-quantum dots (QDs) were purchased from Invitrogen (705 nm emission, Q10161MP, Invitrogen). Biotinylated FtsK was diluted to 20 nM (in trimers) and incubated with 20-fold excess of streptavidin-QDs in binding buffer [40 mM Tris-HCl (pH 8.0), 100 mM NaCl, 2 mM MgCl₂, 0.2 mg mL⁻¹ BSA, 2 mM DTT] for 10 min on ice. QD-′P=0.048, the probability that a single QD has two strain 7723 was infected with P=0.001, and the probability that a single QD FtsK activity is μg mL⁻¹ chloramphenicol to an OD ≈ 0.00002 (2); therefore Proceedings of the National Academy of Sciences of the United States of America 109, 4917-4921 (2012)

FtsK Binding Distribution Histograms in Reactions with ATP. FtsK was diluted to a working concentration of 10 pM in the presence of nucleotide or 100 pM in the absence of nucleotides. In this construct, 110 bp including 3xKOPS was deleted from the 3xKOPS λ-DNA (total 48,461 bp). Phage DNA with one biotinylated cos end and one digoxigenin-containing cos end was prepared according to previously published protocols (10). Briefly, the cos ends were annealed with oligos IF03 and IF04 (Table S1), ligated, and filtered over a Sephacryl S-1000 column (GE Healthcare) to remove excess oligonucleotide and ligation reaction components.

FtsK Binding Distribution Histograms. Double-tethered DNA curtains were prepared as previously described (11), with the exception that we used “zig-zag”-shaped barriers to align the DNA molecules (12) rather than linear barriers (Fig. S1). QD-labeled FtsK was injected into the flowcell and allowed to equilibrate with the DNA for >30 s. Images were then collected for 200 s at a frame rate of 10 frames per second using NIS-Elements software (Nikon) and stored as uncompressed TIFF files. After data collection, the positions of barriers and pentagons were verified by white-light illumination. DNA-bound FtsK molecules were then identified manually, and only individual molecules were selected on the basis of the blinking of the QD signals; any QDs that did not exhibit blinking were excluded from the analysis. QDs that were visible for <5 s were also excluded from the binding histogram analysis, therefore the binding distributions only reflect the population of proteins that stably associated with the DNA. For all binding distribution histograms built from experiments performed in the absence of ATP, the binding position of each FtsK molecule was computed by averaging 200 consecutive video frames, which reduced localization uncertainty due to DNA fluctuations, and the locations of the QD-tagged proteins were determined by fitting the resulting images with a 2D Gaussian function to determine subpixel localization, as previously described (13). The positions of FtsK along the DNA were then mapped by measuring the distance from the center of the nanofabricated barrier to the localized QD signal. The conversion factor from pixels to base pairs was computed by dividing the distance between the center of top and bottom barriers and the DNA length. All histograms were constructed using Origin 8.0 with a bin size of 1.2 kb. Error bars were calculated by bootstrapping the data and indicate a 70% confidence interval (14).
Tracking precision describes how accurately we can track the relative frame-to-frame variation in the position of an individual QD-tagged protein, which is primarily a function of the signal to noise ratio, as determined by the brightness of the QDs, as well as the photon collection and detection efficiency. In the experiments reported here, tracking precision was typically ±30 nm. Position mapping precision describes how accurately we are able to map the binding position of the protein population relative to the underlying DNA sequence. In the experiments reported here our mapping precision is reflected in the widths of the KOPS binding site peaks in the distribution histograms. The factors that contribute to the peak width include (i) the tension on the DNA (in all of our double-tethered DNA experiments the DNA is only extended to a mean length of ≈70–80%; we do this intentionally so as to avoid overstretched the DNA), (ii) the alignment of the DNA molecules relative to one another at the leading edges of the zig-zag–shaped barriers, (iii) the amount of protein binding to non-KOPS sites relative to KOPS sites for a particular experimental condition, and (iv) the number of molecules used to generate the distribution histograms.

Tracking vs. Position Mapping Precision. Tracking precision

Therefore, we only included data reflecting the initial binding positions of FtsK before extensive translocation. First, FtsK was injected into a sample chamber with buffer containing ATP (as indicated) while movies were being recorded. Second, kymograms built from the resulting videos were used to identify proteins that underwent active ATP-mediated translocation (representing ≈90% of the total population). Third, from these kymograms we identified the first video frame in which the proteins could be detected on the DNA; the first frame represents the experimentally identified initial binding of FtsK to the DNA. Fourth, once the frame containing the initial binding event was identified, the OD signal from this frame was fit to a 2D Gaussian to locate the position of the protein on the DNA. As with the binding distributions built from data collected under conditions whereby FtsK does not translocate (described above), the positions of the protein along DNA were computed by measuring the distance from the center of the top nanofabricated barrier to the localized OD signal. The conversion factor from pixels to base pairs was computed by dividing the distance between the center of top and bottom barriers and the DNA length. All histograms were constructed using Origin 8.0 software using a bin size of 1.2 kb. Error bars were estimated by bootstrapping the data and indicate a 70% confidence interval. Note that because ATP is present in these experiments, FtsK may be translocating while the EM CCD is integrating this contribution to the peak width include (i) the tension on the DNA (in all of our double-tethered DNA experiments the DNA is only extended to a mean length of ≈70–80%; we do this intentionally so as to avoid overstretched the DNA), (ii) the alignment of the DNA molecules relative to one another at the leading edges of the zig-zag–shaped barriers, (iii) the amount of protein binding to non-KOPS sites relative to KOPS sites for a particular experimental condition, and (iv) the number of molecules used to generate the distribution histograms.

Fig. S1. Double-tethered DNA curtains with defined lateral dispersion. (A) Left: Optical image of the nanofabricated structures for a double-tethered DNA curtain with a zig-zag-shaped geometric barrier for aligning DNA molecules within single “nanowells” and downstream pentagonal anchor points for tethering the second end of the DNA. Right: A more detailed view of the pattern elements; white arrows illustrate how the apex of each “nanowell” is aligned with one pentagonal anchor. The distance between the adjacent “nanowells” is 1.5 μm. (B) Histogram of observed distances between adjacent YOYO1-stained DNA molecules within the double-tethered curtains. The histogram was fit with five Gaussian functions, and as illustrated here the peak-to-peak distances between adjacent DNA molecules with the curtains occurred at multiples of ≈1.5 μm, as expected for this DNA curtain design (1, 2). The DNA separation distances presented here are reflective of the typical DNA curtains used in the FtsK experiments.

Fig. S2. Assessment of in vivo biotinylation of FtsK. FtsK (0.2 pmol) was mixed with increasing amounts of streptavidin (SA) and incubated in standard microscope buffer [40 mM Tris (pH 8), 0.2 mg/mL BSA, 1 mM DTT, 50 mM NaCl] for 20 min on ice. SDS/PAGE loading buffer was then added to the samples, but the samples were not boiled to maintain the biotin-streptavidin interaction. Reactions were resolved on an 8% SDS/PAGE gel at 250 V for 80 min, and protein bands were detected with SimplyBlue SafeStain (Invitrogen). Lanes: 1, molecular mass standards; 2, FtsK only; 3, 1:1 FtsK:SA; 4, 1:3 FtsK:SA; 5, 1:10 FtsK:SA; 6, 1:30 FtsK:SA; 7, 1:100 FtsK:SA; 8, 1:300 FtsK:SA. These gel shift assays revealed that >90% of the trimers were biotinylated.
Fig. S3. ATPase activity of QD-tagged FtsK. ATP hydrolysis reactions were conducted at room temperature in buffer containing 40 mM Tris (pH 8), 0.2 mg/mL BSA, 1 mM DTT, 50 mM NaCl, 2 mM MgCl₂, 1 nM lambda phage DNA, 1 mM ATP, and 100 pM FtsK trimer. Reactions were terminated at the indicated time points by the addition of an equal volume of 50 mM EDTA. The products were then resolved by TLC and quantified with phosphor imaging. The black curve represents reactions in the absence of QDs, and the red curve represents reactions conducted at a 1:20 ratio of FtsK:streptavidin-QDs. Error bars denote the SD of at least three independent measurements.

Fig. S4. FtsK reverses directions irrespective of DNA curtain density. FtsK translocation experiments were performed on DNA curtains with differing amounts of DNA. (A and B) Upper: Examples of high- and low-density DNA curtains, respectively. Lower: Examples of specific individual DNA molecules; the corresponding kymograms show the behavior of FtsK on these different DNA molecules. In A the distance between the nanowells was 1.5 μm, although the DNA was loaded at such a high density that there may be more than one DNA molecule present per nanowell. In B the DNA was loaded at a low density, and for the highlighted molecule the nearest neighboring DNA molecules were 3 μm to the left and 6 μm to the right. As shown in the kymograms, FtsK reversed direction during translocation irrespective of the DNA curtain density. The low-density DNA curtain in B is typical of that which was used for all of the experiments presented in the main text. These findings indicate that the changes in direction were independent of local DNA curtain density, indicating that FtsK remained bound to the same DNA molecule for the duration of the experimental observations, and arguing against the possibility that the changes in direction resulted from FtsK “jumping” to a nearby DNA molecule.

Fig. S5. FtsK changes direction in the absence of free proteins. First, 1 pM of QD-tagged FtsK was bound to a DNA curtain in buffer containing 1 mM ADP. The sample chamber was then flushed with buffer lacking free FtsK for ≈3 min at a flow rate of 0.3 mL/min. This washing procedure removed all detectable traces of free QD-tagged FtsK, as judged by the absence of free quantum dots diffusing within the sample chamber. After identifying molecules of KOPS-bound FtsK, translocation was then initiated by flushing the sample chamber with buffer containing 1 mM ATP. As illustrated by the kymogram, FtsK still exhibited changes in direction during translocation, even after flushing the chamber to remove free proteins, arguing against the possibility that the changes in direction arose from collisions with other, transiently bound molecules of FtsK.
Fig. S6. Temperature dependence of the FtsK ATPase activity. ATP hydrolysis reactions were conducted as described in Fig. S2 at temperatures ranging from 23 °C to 53 °C, as indicated.

Fig. S7. KOPS specificity of FtsK DNA binding activity. (A) Binding distribution of FtsK on the 3xKOPS bearing λ-DNA substrate; note that this panel is identical to that shown in Fig. 3A from the main text. (B) Binding distribution of FtsK on a λ-DNA substrate lacking the 3xKOPS site. As shown here, when the 3xKOPS site is not present, the middle peak in the FtsK binding distribution disappears, confirming that the peak can be ascribed to KOPS-specific binding by FtsK.

Fig. S8. Binding distribution histograms of FtsK under different nucleotide conditions. (A) Wild-type FtsK binding distribution with 1 mM ATPγS. (B) Wild-type FtsK binding distribution following a 20-min preincubation with 1 mM ADP followed by a chase with 3 mM ATP immediately before injection into the sample chamber.
Fig. S9. Overview of procedure for measuring initial binding distribution histograms for the translocating FtsK molecules. (A) Typical kymogram of a translocating molecule of FtsK collected in the presence of 1 mM ATP. The circled region indicates the first frame in which the protein is detected bound to the DNA. (B) Video frame corresponding to the initial FtsK binding event, along with an example of (C) 2D Gaussian fit, which is used to pinpoint the location of the QD-tagged protein. (D) FtsK distributions measured in the presence of ATP (this panel is taken from Fig. 3D); the bin assignment for the protein shown in A and B is highlighted with an arrow. As indicated in the main text, KOPS binding dictates the direction of translocation, therefore if translocation influenced the outcome of these measurements, we would have expected the binding distribution peaks to shift ≈0.5 kb in the direction dictated by KOPS rather than disappear altogether.

Table S1. Oligonucleotides

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF01</td>
<td>AAACGAATGCTGACGGTCACCAAAACATCGGCACTGCCAGCTCCTCC</td>
</tr>
<tr>
<td></td>
<td>accggctGGCGACGGGACGGCGACGTCTACAAGAGAAAC</td>
</tr>
<tr>
<td>IF02</td>
<td>CAAACACAGAGCTCTTCATCATTTCAAGCTATTAAATATTGCTAACAG</td>
</tr>
<tr>
<td></td>
<td>GTGCCTGATCTGATGTCATGACGGGATGATGCCCGGCCGGAGGTGCTGCGT</td>
</tr>
<tr>
<td>IF03</td>
<td>[P]AGGTCGCCGCCC(B)</td>
</tr>
<tr>
<td>IF04</td>
<td>[P]GGGCGGCGACCT(D)</td>
</tr>
<tr>
<td>JL01</td>
<td>TTTCTCTGTGCCATGACGGAGGATGATGCCCGGCCGGAGGTGCTGCGT</td>
</tr>
<tr>
<td></td>
<td>CGTAAGGGGTCTACCTCGGTGCC</td>
</tr>
<tr>
<td>JL02</td>
<td>AGGGACACACCCTCTTGAGC</td>
</tr>
</tbody>
</table>

Phosphates at 5′ positions are marked with a [P]. Biotin at the 3′ end is marked with a [B]. Digoxigenin at the 3′ end is marked with a [D]. The 3xKOPS sequence is underlined.

Other Supporting Information Files

Dataset S1 (TXT)