
Supplementary Information for

HEDGES Error-Correcting Code for DNA Storage Corrects Indels and Allows Sequence
Constraints

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

William H. Press.
E-mail: wpress@cs.utexas.edu

This PDF file includes:

Supplementary text
Figs. S1 to S6
SI References

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 1 of 12
www.pnas.org/cgi/doi/10.1073/pnas.2004821117

Supporting Information Text

Supplementary Text

A. Example System Design with Outer Code. For cost and efficiency, both DNA synthesis and DNA sequencing employ massive
parallelism. That is, many short sequences, each of length hundreds to thousands of bases, are written (synthesized) or read
(sequenced) simultaneously. While the length of a single synthesis or read will increase as technology improves, it is unlikely
that the great advantage of parallelism will ever be superceded. This being the case, the basic units of our design are individual
strands of length 102–104.

To connect with our use of a Reed-Solomon outer code, here RS(255,223), we define a “DNA packet” as an ordered set of
255 DNA strands. When any one strand in the set is decoded with HEDGES, it produces a message fragment of length L
bytes (say), now having high probability of being perfectly synchronized. Each 255 correctly ordered message fragments form a
“message packet”, as illustrated in main text Figure 1C. There can be any number of message packets in a total communication.

The Reed-Solomon code is applied across the strands (interleaved). This enables it to protect against missing strands—
“erasures” to coding theorists—as well as correcting any residual substitution errors that were not corrected by HEDGES.
Different from previous investigations, we apply the RS code diagonally across the strands (see Figure). This increases the
resistance to any failure of synthesis or sequencing to produce full-length strands. It also ameliorates the effect of the observed
tendency for error rates to be higher at the ends of strands.

It is an important point that the Reed-Solomon code can only be applied after the strands in a packet are identified as
being from one particular packet (out of an assumed pool of many packets, perhaps millions) and are correctly ordered. This
implies that a packet’s identification number and a strand’s serial number within the packet (both shown as shaded green in
the Figure) cannot themselves be RS protected. We therefore protect them by the different technique (“salt protection”) that
was described in Methods. Salt protection has the effect of turning uncorrectable errors in the identification/serial bytes into
erasures in the message bytes—which are correctable by RS.

Summarizing, the main points that relate to the use of HEDGES as an inner code are these: (1) We don’t need to decode
strands of arbitrary length, but only of some known uncorrupted length L. (2) Recovering synchronization has the highest
priority. (3) Known erasures are less harmful than unknown substitutions, because RS can correct twice as many erasures as
substitution errors. (4) Burst errors within a single byte are less harmful than distributed bit errors, because RS corrects a
byte at a time. (5) Within the RS code’s capacity for byte errors and erasures, residual errors will be fully corrected by the
outer code, yielding an error-free message.

B. Details of the encoding algorithm. Elaborating on the description in the main text, let Si denote an arbitrary s-bit value
(“salt”) that can depend on i but is known to both sender and receiver,

Si = known ∈ Z⊗s
2

(The purpose of the salt is discussed in the main text.) Denote the low-order q bits of the bit position index i by

Ii ≡ i (mod 2q)

Let Bi denote the p previous concatenated bits

Bi ≡ [bi−pbi−p+1 · · · bi−1] ∈ Z⊗p
2

Finally, let F (S, I,B) be a deterministic hash function from p+ q + s bits to 2 bits

F (S, I,B) : Z⊗(p+q+s)
2 → Z4

Then the formula for encoding is
Ci = Ki + bi = F (Si, Ii, Bi) + bi (mod 4) [1]

Main text Figure 1D shows the algorithm graphically.
Typical values that we use are p = 8, q = 10, s = 46, so that p+ q + s = 64 bits, a convenient value for input to the hash.

For the hash function we use the low order 2 bits from the Numerical Recipes (1) function Ranhash.int64(), because it is very
fast and will occur in the inner loop of the decode algorithm.

C. Details of the decoding algorithm. We can formalize the discussion in the main text as follows. Let H:= [i, bi, Bi, k] denote
the joint hypothesis that the values i, bi, Bi are all correct and synchronize to the observed codestream character C′k through
equation Eq. (1). As a node in the search tree, the hypothesis H:= [i, bi, Bi, k] spawns six child hypotheses, each of which can
be scored with additional penalty ∆P (to be added to their common parent’s accumulated penalty) as follows:

H:= [i+ 1, {0, 1},Bi+1, k] :
∆P = Pdel

H:= [i+ 1, {0, 1},Bi+1, k + 1] :
∆P = (Pok if C = C′ else Psub)

H:= [i+ 1, {0, 1},Bi+1, k + 2] :
∆P = (Pins + Pok if C = C′ else Pins + Psub)

[2]

2 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

Here Psub, Pins, Pdel can be thought of as respectively the log probability penalties for substitution, insertion, or deletion errors
(but see below for additional nuance). Pok is the penalty or, if negative, reward, for an agreement between the computed and
received codestream characters C and C′. In the comparison notated above as C = C′, the index of C is the first parameter in
the hypothesis H, while the index of C′ is the last parameter in H. Note that a child node’s Bi+1 is always computable from
its parent’s Bi and bi.

How can we practically search this huge tree? A conceptual starting point is the famous A* search algorithm (2), a best-first
(that is, “greedy”) search utilizing a heap data structure. A* assigns a heuristic cost to every node that is the sum of its actual
cost plus a quantity less than or equal to the smallest possible additional cost that it can incur in reaching the goal. (For a tree
of constant depth, this is equivalent to adding a reward for every step taken closer to the leaf nodes, i.e., a negative constant
Pok above.) Main text Figure 1F shows the logical flow of an A* search, and also the HEDGES decode algorithm.

Provably, A* always finds the best path. For our application, unfortunately, this guaranteed result is exponentially slow,
because actual errors along the true path cause too many spawned hypotheses to be revisited; and because its termination
criterion is too restrictive, again leading to too many spawned hypotheses.

To ameliorate these problems we make two heuristic modifications of A*: First, we allow Pok to be more negative than
that sanctioned by A* and tune its value heuristically. While we thus lose the guarantee of finding exactly the shortest path,
we heuristically encourage the search not to revisit earlier hypotheses after a sufficiently lengthy run of successes along one
particular chain. Second, we adopt a “first past the post” termination criterion. That is, the first chain of hypotheses to decode
the required L bytes of message wins. It is not obvious (or, by us, provable) that these heuristics should result in a workable or
efficient algorithm, but for the success of our numerical experiments.

D. Choice of, And Trade-Offs Among, Parameters. It might at first seem that bigger is better for both q and p, but this is not
the case. Restricting p to a smaller value better allows the heap search to recover from previous errors, basically by finding a
clever acasual (i.e., “wrong”) path that coincidentally puts it back on track. As for q, restricting it to a smaller value could be
useful in case one desires the capability of jumping into the middle of an undecoded message: The heap can then be initialized
with all possible values of I and B (cf. main text Figure 1D). For our concatenated design (Supplementary Information) this is
not a necessary, or useful, capability, however. For the validation experiments described above in Results, we took q = 10,
r = 8, n = 16 or 24.

For decoding, we need to know the encoding parameters, and must now also choose values for Psub, Pdel, Pins, and Pok. While,
conceptually, these are negative log probabilities of the occurrence of the different kinds of errors (which can be known only
after the fact), we adopt a more empirical approach. First, we take Psub = Pdel = Pins to give the HEDGES decoding algorithm
equal robustness against all three kinds of errors. Second, we note that the search for shortest path is invariant under applying
the same linear (or affine) transformation to all four P ’s. So, without loss of generality, we may take Psub = Pdel = Pins = 1,
leaving Pok as the only free parameter. We determine optimal (or at least good) values for Pok by numerical experiment. We
find that the optimal Pok depends only negligibly on the encoding parameters q and p, and only slightly on the length L of the
strand, but it does depend on the code rate. Good values for various code rates are given in the third column of Table 3.

Implicitly, the choice of Pok reflects a tradeoff between computational workload and decode failure probability. Pok that is
too negative results in too greedy a search, which is fast but can get stuck in a blind alley that requires us to declare the rest of
the strand as an erasure (hence its dependence on strand length). On the other hand, Pok that is insufficiently negative results
in a too large, potentially exponential, expansion of the size of the heap. Happily, there is an accessible range of workable
values. Changes of ∼10% in Pok matter little, and our values are implicitly tuned for best performance on strand lengths in the
range ∼100 to ∼1000.

Above, we limited the guesses for skew ∆ to only {−1, 0, 1} so as to limit the expansion of the heap. (Even allowing
skew ∆ = {−2,−1, 0, 1, 2} explodes the heap size and computation time). Runs of deletions can correctly be decoded with
consecutive deletion hypotheses. However, this skew limit results in more than one consecutive insertion being improperly
scored. For example, without the possibility of skew ∆ = +2, the shortest available path through two insertions . . . II . . . incurs
a spurious substitution . . . ISI . . ., with probability ≥ 1

4 of the randomly inserted characters still allowing a correct decode
path (e.g. if the second inserted base matches the following character). In practice, this makes little difference, because double
insertions are significantly less common than single insertions, and because other, completely incorrect, paths score much worse.

Adaptive choice of Hlimit. As commented in the main text, the decode heap size Hlimit is not an irrevocable choice. Strands
that fail to decode can be retried with a larger value of Hlimit. Figure S6 shows failure rates for different values of Hlimit. One
sees that in the typical case, increasing Hlimit by a factor eight gives roughly one order of magnitude decrease in decode failure
probability.

Entropy loss from constraints

As noted in the main text, imposing sequence constraints on allowed output sequences does not change the code rate, r, of
HEDGES encoding. Rather, the error-correcting capacity is slightly reduced, corresponding to the overall entropy loss resulting
from the selected constraints. In order to characterize this effect, we here calculate the entropy loss resulting from the two
most common types of sequence constraints, homopolymer runs and GC content.

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 3 of 12

E. Homopolymer run constraints. We here find the entropy loss due to restricting homopolymer runs to a maximum length R.
Let n be a given sequence length and let Sn be the number of length-n sequences satisfying a given constraint. The entropy
per character of length-n sequences is given by

Hn = 1
n

log2(Sn) [3]

Let vn,i be the number of sequences of length n such that the final i bases are the same, and the base at position n− i− 1
is different from the final i bases. We say such a sequence has end run length i. For example, the sequece GGGAA is length 5
with end run length 2, so corresponds to v5,2. Finally, write the vector of vn,i over i as vn.

A simple system of linear equations relates vn to vn−1. For every sequence in vn−1,i, one of the four possible next bases will
extend the end run (add to vn,i+1) and the other three possible next bases will break the run (add to vn,1). That is,

vn =



3 3 3 · · · 3 3
1

1
1

. . .
1 0





vn−1,1
vn−1,2
vn−1,3
vn−1,4

...
vn−1,R


= Mvn−1 = Mn−1v1

[4]

where v1 = (4, 0, 0, · · · , 0)T and Sn =
∑R

i=1 vn,i. The filtering of sequences with long runs happens by their “falling off the
bottom” of the matrix equation, as it were.

Lemma: Hn converges to log2(λ∗), where λ∗ is the largest eigenvalue of M
Proof: This is true by the same reasoning as the power method of finding eigenvalues: for the largest eigenvalue λ∗ and

corresponding eigenvector u∗ of M ,

M

(
Mnx

||Mnx||

)
→ λ∗

(
Mnx

||Mnx||

)
∀ x 6⊥ u∗ [5]

Even a single application of M always makes vn,1 the largest value of vn, so u∗1 6= 0 and thus v1 6⊥ u∗. The average of a
converging sequence converges to the same value, so it is sufficient to find the limit of Hlast

n , the entropy of the last character.
Hence,

Hlast
n = log2(Sn)− log2(Sn−1)

= log2

(∑
i
(Mvn−1)i∑

i
vn−1,i

)
→ log2(λ∗)

Recognizing the matrix M as the transition matrix of the linear recurrence relationship,

an = 3
n−1∑
i=0

an−1−i [6]

we can read off the characteristic polynomial by inspection. Hence, for maximum homopolymer run length R,

H(R) = lim
n→∞

Hn(R)

= log2

(
LargestRoot

[
λR − 3

R−1∑
i=0

λi = 0

])
[7]

The largest root here is the effective number of possible characters per position, which tends toward 4 as R gets large.
Letting λ∗ = 4 + ε, one finds that as R gets large, ε ≈ − 3

4R . And hence, the fractional entropy loss from 2 bits of entropy per
character, L(R), is

L(R) ≡ 2−H(R)
2 ≈ 3

8 ln 24−R [8]

Figure S4A shows several numerically solved values of L(R), as well as this asymptotic approximation.

4 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

F. Arbitrary constraints on subsequences. The results from the previous section can be generalized in a straightforward manner
to arbitrary constraints on (short) subsequences as follows.

First, generate the list of all allowed subsequences of length w, the maximum constraint width. Consider each allowed
sequence to be a node in the graph G of sequence paths and create a directed edge from one allowed subsequence to any
allowed subsequence which could follow it by sliding the constraint window one base to the right. I.e., the allowed sequence
s1s2 . . . sw has a directed edge to each s2 . . . swN that is still an allowed sequence. By construction, there is a bijection between
allowed full length sequences of any length greater than w and paths through this graph.

Let M be the adjacency matrix of G and let vw = (1, 1, 1, . . . , 1)T initialize the fact that each allowed sequence ends
exactly one sequence of length w, itself. Then as above vn+1 = Mvn and Hn → log2(λ∗). We do not in general have a nice
characteristic polynomial as before, but the largest eigenvalue can be found numerically. The principal limit of this method is
that the number of allowed subsequences must be relatively small for computationally tractability.

G. GC content constraints. For GC content contstraints, we proceed as described in the previous section. But we can exploit
the fact that under this constraint A = T and C = G. We can thus consider only sequences with A and C and then add one
bit of entropy per character for the entropy of A/T or C/G. This reduces the number of allowed sequences, and hence the side
length of M , by a factor of 2w. Figure S4B shows the fractional entropy loss for all GC content constraints in windows up to
width w = 20.

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 5 of 12

bit value vibit index i

mod size of {C}

DNA Ci
out

S: s bits of “salt”
(Strand ID)

I: low q bits of
index i

hash function on
s+q+p bits

V: p bits of previous
vi-1 , vi-2 , ...

determine # bits in vi

previous DNA Ci-1, Ci-2, ...

determine allowed
outputs {C}

Fig. S1. Full HEDGES algorithm, including steps for variable code rates (dotted lines) and sequence constraints (dashed lines).

6 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

DNA strand length (nt)

de
co

de
 fa

ilu
re

 p
ro

ba
bi

lit
y

0.01 0.02 0.03 0.05 0.07 0.10 0.15

Perr

r

Fig. S2. Cumulative decode failure probability as a function of DNA strand length for the simulations described in the text. A separate simulation is performed for each
combination of DNA error rate Perr and code rate r, as shown in the legend. The simulation results are well fit by straight lines (narrow lines as shown), indicating that the
probability of decode failure is approximately a constant (the slope) per nucleotide position along each strand. The small offset (∼50 to ∼100 nt) from the origin is an artifact of
the maximum allowed heap size: A decode does not signal failure until its heap is exhausted.

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 7 of 12

Fig. S3. Left: Same as main text Figure 2, but for the case where DNA output constraints are imposed: No homopolymer runs > 4, 4 ≤ CG ≤ 8 in any window of 12. Right:
Ratio of unconstrained to constrained values for all quantities on the left. Generally the changes are insignificant. Only the three combinations of code-rate and error-rate in
outlined boxes are significantly different, changing formerly marginal cases to now-infeasible ones. We conclude from these results and Figure S4 that the penalty on HEDGES
in imposing the most common output constraints is small.

8 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

BA

Fig. S4. Entropy loss from constraints. A) Entropy loss from homopolymer run constraints. B) Entropy loss from GC content constraints. GC content constraints are symmetric
and are given by their maximal value, such that 40-60% GC is shown as 60% Max GC/AT. Colored lines give interpolated splines for a few GC content values of interest.
Colored dots give realizable values in discrete DNA space. Grey lines give the integer value of the Max GC/AT nucleotides in terms of sliding window width, w. For example, for
window length w = 20, 65% Max GC/AT is equivalently w − 7 = 13 Max GC/AT nucleotides. From (A) and (B), the two most common output constraints under reasonable
parameters have combined entropy loss of only a few percent, as simulated in Figure S3.

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 9 of 12

Fig. S5. Measured in silico performance of the HEDGES algorithm, and inferred performance when concatenated with an interleaved outer RS(255,223) code. Each box is a
different combination of code rate r and simulated DNA error rate Perr. Blue cells are measured values for HEDGES by itself: top value is bit error rate, middle is byte error rate,
bottom is mean run of DNA characters to a decode failure. Red, yellow, and green cells assume a specific interleaved design (see text), and show mean equivalent correctable
errors per RS decode (top value), and mean number of message bytes before an uncorrectable error (bottom value). Color indicates overall feasibility for error free data storage
at petabyte or exabyte scale.

10 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

102 103 104

strand length (nt)

10 3

10 2

10 1

100

pr
ob

ab
ilit

y
of

 fa
ilu

re
 to

 d
ec

od
e

fu
ll

st
ra

nd

Full strand failure rates vs. strand length (varying input error rates and max hypotheses)
0.10 125000
0.10 250000
0.10 500000
0.10 1000000
0.05 125000
0.05 250000
0.05 500000
0.05 1000000
0.03 125000
0.03 250000
0.03 500000
0.03 1000000

Fig. S6. HEDGES decode failure rates vs. strand length of a half-rate code as a function of total DNA error rate (3%, 5%, 10%) and hypothesis budget Hlimit (1.25 × 105,
2.5 × 105, 5 × 105, 1 × 106).

William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein 11 of 12

References

1. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes: The Art of Scientific Computing, Third Edition
(Cambridge University Press, 2007), p. 352.

2. Hart PE, Nilsson NJ, Raphael B, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths", IEEE
Transactions on Systems Science and Cybernetics, SSC4, vol. 4 no. 2, pp. 100-107 (1968)

12 of 12 William H. Press, John A. Hawkins, Stephen Knox Jones Jr, Jeffrey M. Schaub, and Ilya J. Finkelstein

	Example System Design with Outer Code
	Details of the encoding algorithm
	Details of the decoding algorithm
	Choice of, And Trade-Offs Among, Parameters
	Homopolymer run constraints
	Arbitrary constraints on subsequences
	GC content constraints

