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The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate
in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are
unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent
subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside
the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the
response, including an amino (N)-terminal domain (NTD)–directed antibody that was protective against
lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of
“public” antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2
variants of concern. These data show that “public” NTD-directed and other non-RBD plasma antibodies
are prevalent and have implications for SARS-CoV-2 protection and antibody escape.

T
he severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spike ecto-
domain (S-ECD) folds into a multido-
main architecture (1, 2) and includes the
receptor binding domain (RBD), which

is essential for viral infectivity, and the struc-
turally adjacent amino (N)-terminal domain
(NTD), which plays an uncertain role. Humoral
immunity to the spike (S) surface glycoprotein
can correlate with protection (3), and it is the
primary antigenic target for most vaccines
andmonoclonal antibodies (mAbs). That the
B cell repertoire can recognize multiple spike
epitopes is supported by extensive single-cell
cloning campaigns (4–9). However, the iden-
tity, abundance, and clonality of the immuno-
globulin G (IgG) plasma antibody repertoire
and the epitopes it may target are not known
(10–12). Divergence between the two reper-
toires is biologically plausible (13–17), and
the evidence in COVID-19 includes a paradox-
ical disconnect between virus-neutralizing
IgG titers and RBD-specific B cell immunity
(6, 11, 18, 19).
To analyze the IgG repertoire, we collected

blood during early convalescence from four
seroconverted study subjects (P1 to P4) who

experiencedmild COVID-19 disease thatmani-
fested with plasma virus-neutralization titers
in the lowest quartile (P1 and P3), the second
highest quartile (P2), or the highest quartile
(P4) compared to a larger cohort (table S1 and
fig. S1). The lineage composition and relative
abundance of constituent IgG antibodies com-
prising the plasma response to either intact
stabilized S-ECD (S-2P (1)) or RBDwas deter-
mined using the Ig-Seq pipeline (13, 14, 20)
that integrates analytical proteomics of affinity-
purified IgG fractions with peripheral B cell
antibody variable region repertoires (BCR-Seq).
IgG lineages detected by Ig-Seq in the S-ECD

fraction but absent from the RBD fraction were
deemed to be reactive with spike epitopes out-
side the RBD. In subject P3, we detected six IgG
lineages that bound to S-ECD (Fig. 1A). Four
of these (Lin.1 to Lin.4) accounted for 93.5%
abundance of the total plasma IgG S-ECD
response and exhibited extensive intralineage
diversity (fig. S2) indicative of clonal expansion
and selection. Notably, the top three lineages
(Lin.1 to Lin.3; >85% abundance) all bound to
non-RBD epitopes (S2 subunit or NTD). Bulk
serology enzyme-linked immunosorbent assays
(ELISAs) recapitulated the Ig-Seq result and

demonstrated similarly high levels of non-RBD-
binding IgG (P> 0.05) (Fig. 1B), confirming that
RBD-bindingplasma antibodies constitute only
a minor proportion of all spike-binding IgG
in naturally infected individuals (21). In all
four subjects, the detected plasma IgG reper-
toire to S-ECDwas oligoclonal, comprising only
6 to 22 lineages, with the top-ranked lineage
constituting 15 to 50% of the total abundance.
On average, 84% of the anti-S-ECD plasma IgG
repertoire bound to epitopes outside the RBD
(Fig. 1C), a finding consistent with data from
single B cell analyses (22), and the most abun-
dant plasma IgG lineage in all donors recog-
nized a non-RBD epitope (Figs. 1A and 2A and
fig. S3).
Binding analysis of P3 mAbs CM29 to CM32

representing themost expanded clones within
each of lineages Lin.1 to Lin.4 showed that
CM29 (Lin.1) recognizes the S2 subunit [dis-
sociation constant (KD) = 6.6 nM], CM30 and
CM31 (Lin.2 and Lin.3 with KD = 0.8 and
37.7 nM, respectively) were specific for the
NTD, and CM32 (Lin.4) bound the RBD (KD =
6.0 nM), as expected from the Ig-Seq differen-
tial affinity purifications (Fig. 1A and table S2).
CM30 potently neutralized authentic SARS-
CoV-2 in vitro [median inhibitory concen-
tration (IC50) = 0.83 mg/ml] and CM32 was
slightly less potent (2.1 mg/ml), whereas CM29
and CM31 showedminimal neutralization ac-
tivity (Fig. 1D).
We then determined the capacity of mAbs

CM29 to CM32, singly and in combination, to
confer prophylactic protection in vivo to virus
challenge using the MA10 mouse model of
SARS-CoV-2 infection (23, 24). Even though
the RBD-directed mAb CM32 could neutral-
ize authentic virus in vitro and had relatively
high antibody-dependent cellular phagocyto-
sis (ADCP) activity (fig. S4), it did not protect
in vivo (fig. S5), possibly because of amino acid
changes in the MA10 virus. Similarly, no pro-
tection was observed for the non-neutralizing
S2-directed mAb CM29 or non-neutralizing
NTD-directedmAbCM31. TheneutralizingmAb
CM30, derived from the top-ranking NTD-
targeting IgG lineage (21% abundance), was
the sole plasma antibody that conferred com-
plete protection to MA10 viral challenge (Fig. 1,
E and F, and fig. S5). Administration of a cock-
tail comprising the top non-RBDplasmamAbs
CM29 to CM31 (>85% of the IgG plasma lin-
eages to S-ECD; Fig. 1A) showed the most
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robust protection and lung viral titers below
the limit of detection in high–viral load chal-
lenge [104 plaque-forming units (PFU)].
Subject P2, with ~10-fold higher neutraliz-

ing titer compared with subject P3 (fig. S1
and table S1), displayed a more polyclonal IgG
response (Fig. 2A), with 12 out of 15 lineages
(>80% total abundance) in the anti-S-ECD
repertoire recognizing non-RBD epitopes.
Conspicuously, as with P3, the most abun-
dant S-ECD–directed plasma antibodies target
the S2 subunit, with the four topmost lineages
(68% total abundance) binding to S2. mAbs
CM25 and CM17, representative of two NTD-
targeting lineages each constituting ~2.5% of
the response at day 56 (Ig-Seq Lin.6 and Lin.9)
(Fig. 2A), were both encoded by unmutated
or near-germline immunoglobulin G heavy-
chain variable region 1-24 (IGHV1-24).We found
an additionalNTD-targeting unmutated IGHV1-
24 plasma mAb (CM58) in subject P4. CM17,
CM25, and CM58 bound S-ECD with similar
single-digit nanomolar affinity (Fig. 2B and
table S2), and all three potently neutralized
SARS-CoV-2 virus, with IC50 values of 0.01

to 0.81 mg/ml comparable to those of S309
anti-RBD control (25) (Fig. 2C, fig. S6, and
table S2). For all three mAbs, preadministra-
tion in the MA10 mouse model resulted in
significantly reduced lung viral titers after
infection with 105 PFU (Fig. 2D; P < 0.001),
resulting in 100% survival, compared with
just 40% in the control group (Fig. 2E). CM17-
and CM25-treated cohorts exhibited only mini-
mal weight loss (Fig. 2F). Thus, IGHV1-24 is
intrinsically suited for potent and protec-
tive targeting of the NTD.
B cell expression of IGHV1-24 in COVID-19

(~5 to 8%) (5, 7, 26) is ~10-fold higher than in
healthy individuals (0.4 to 0.8%) (27). More-
over, we could detect IGHV1-24 plasma anti-
bodies only in S-ECD fractions (mean 3.7%)
but not among anti-RBD IgGs (Fig. 3, A and
B). Alignment of CM17, CM25, and CM58
with four neutralizing IGHV1-24 anti-NTD
mAbs cloned from peripheral B cells [4A8
(4), 1-68 (5), 1-87 (5), COVA2-37 (7)] and an
additional antibody [COV2-2199 (8)] identi-
fied a class of convergent heavy-chain variable
(VH) immune receptor sequences (Fig. 3C). In

all cases, three glutamate (Glu) residues (Glu36,
Glu59, and Glu80) located in complementarity-
determining region–H1 (CDR-H1), CDR-H2,
and framework H3 (FWR-H3), respectively, as
well as a phenylalanine (Phe) residue (Phe56)
in CDR-H2, were invariably unmutated and
are specific to the electronegative IGHV1-24
[isoelectric point (pI) = 4.6]. The convergent
VH genes paired promiscuouslywith six distinct
light-chain variable (VL) genes, yet CDR-H3
peptide lengthswere restricted (14 or 21 amino
acids) (table S3). A “checkerboard” binding-
competition experiment (Fig. 3D) indicated
the presence of at least two epitope clusters on
the NTD, including one targeted by all of the
tested IGHV1-24 mAbs (4A8, CM25, CM17,
CM58, and 1-68) and the IGHV3-11 mAb CM30.
Another NTD epitope was identified by CM31
(IGHV2-5, 6.4%mutation), which overlapped
with CM30 (IGHV3-11; 3.1%mutation), CM58,
and 1-68 but did not compete with the other
three IGHV1-24 NTD mAbs.
To better understand the IGHV1-24 inter-

actions with the spike NTD, we determined a
cryo–electron microscopy (EM) structure of
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Fig. 1. Most plasma IgG antibodies bind non-RBD spike epitopes such
as the NTD. (A) Affinity purification using spike S-ECD (1) or RBD for subject P3.
Plasma IgG lineage identities, binding specificity, and relative abundance were
mapped by means of Ig-seq proteomics (14), facilitating recombinant plasma mAb
characterization; anti-RBD (green); anti-S2 (blue); and anti-NTD (red). (B) IgG
ELISA binding (1:150 plasma dilution) to S-ECD alone or in the presence of RBD
(50 mg/ml) [S-ECD(RBD-)] or S-DRBD deletion mutant. (C) Quantitative Ig-seq
determination of anti-RBD and non-RBD IgG mAb abundance in early convalescent

plasmas across four subjects. (D) Authentic virus neutralization (in duplicate) of
the four most abundant plasma IgGs (CM29, CM30, CM31, CM32) from plasma
lineages Lin.1, Lin.2, Lin.3, and Lin.4 in subject P3. (E and F) Prophylactic
protection of 12-month-old BALB/c mice (n = 5 per group) against lethal challenge
with a high dose (104 PFU) of mouse-adapted (MA10) SARS-CoV-2. Cocktail of
non-RBD mAbs (200 mg per mouse) at 2:1:1 ratio reflecting their relative plasma
abundance. **P < 0.005; ****P < 0.0001, determined by one-way analysis of
variance (ANOVA) with Dunnett’s multiple comparisons test.
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CM25 Fabs bound to trimeric S-ECD (Fig. 4A
and figs. S7 and S8). Focused refinement of
the CM25-NTD interface resulted in a 3.5-Å
reconstruction that revealed a heavy-chain–
dominant mode of binding, with substantial
contacts mediated by interactions among the
three CDRs and the N3 and N5 loops of the
NTD (Fig. 4B). The light chain contributes
only 11% (86 Å2) of the total CM25 binding

interface, mainly through a stacked hydro-
phobic interaction between CDR-L2 Tyr55 and
Pro251 within theN5 loop. Distinctive germline
IGHV1-24 residues contribute 20% (149 Å2) of
the total binding interface. CDR-H1 interacts
extensively through hydrogen bonds and con-
tacts between hydrophobic residues, including
a salt bridge formed between the conserved
Glu36 residue and the N5 loop residue Arg246

(Fig. 4C). The common IGHV1-24 Phe56 residue
in CDR-H2 forms a pi-cation interaction with
Lys147 in the N3 loop (Fig. 4C). CM25 contains
a 14–amino acid CDR-H3 loop that contributes
35% (261 Å2) of the total interface, including
the AV aliphatic motif found in all but one of
the convergent IGHV1-24 NTD-binding mAbs.
Ala109 and Val110 are buried at the interface
in a binding pocket framed by the N3 and N5
loops. A comparison of CM25 with an extant
structure of an IGHV1-24 NTD-binding anti-
body isolated byB cell cloning, 4A8 (4), revealed
that the AV dipeptide interaction is structurally
conserved, and the 21–amino acid CDR-H3 of
4A8 extends along the outside of the NTD, con-
tributing three additional contacts and 46%
(415 Å2) of the total binding interface (Fig. 4D).
Both structures show extensive contacts be-
tween the heavy chain of the Fabs and theNTD
N3 and N5 loops. The Glu36-Arg246 salt bridge
and an identical CDR-H2 contact between
Phe56 and Lys147 are conserved in the 4A8-NTD
interface.
SARS-CoV-2 variants of concern containmu-

tations in the NTDN3 and N5 loops, including
Y144/Y145D and K147E (UK lineage B.1.1.7),
W152C (California B.1.429), and 242-244D or
R246I (South Africa B.1.351). Alanine substi-
tutions at several of these positions ablated
binding or reduced affinity more than five-
fold by public IGHV1-24 antibodies, as exem-
plified by 4A8, CM17, and CM25 (Fig. 4E and
fig. S9), a result consistentwith the CM25-NTD
and 4A8-NTD structures. Additionally, we con-
firmed that an engineeredN3-N5 doublemutant
and native B.1.351 (28) both evade neutralization
bymAbs CM25 and 4A8 (Fig. 4F). Thus, muta-
tions in SARS-CoV-2 variants confer escape from
public neutralizing anti-NTD antibodies.
In conclusion, we find that the convalescent

plasma IgG response to SARS-CoV-2 is oligo-
clonal and directed overwhelmingly toward
non-RBD epitopes in the S-ECD. This includes
public, near-germline, and potently neutraliz-
ing antibodies against the NTD. The extent to
which public anti-NTD antibodies contribute
to protection is likely related to their relative
concentrations in plasma, which can be domi-
nant in some individuals. Our finding that
mutations present in circulating SARS-CoV-2
variants can impair or ablate binding and neu-
tralization by public anti-NTDantibodiesmay
constitute a mechanism of viral escape in a
subset of the population. Numerous other NTD
mutations—which overlapwith the structural
epitope recognized by the public IGHV1-24
antibody class—have been described in addi-
tional circulating variants, in laboratory escape
mutants, and in immunocompromisedpatients
(12, 29–33).

REFERENCES AND NOTES

1. D. Wrapp et al., Science 367, 1260–1263 (2020).
2. A. C. Walls et al., Cell 181, 281–292.e6 (2020).
3. K. McMahan et al., Nature 590, 630–634 (2021).

Voss et al., Science 372, 1108–1112 (2021) 4 June 2021 4 of 5

4A
8

CM17

CM25

CM30

REGN10
98

7

Y144A

Y145A

K147A

W152A

R246A

Y248A

HexaPro-D614G

Log2(Δnorm
alized

Kd)

-8

-4

0

4

8

CM25 S-Y145Δ+R246I
CM25 S-WT

CM25 S-SA

4A8 S-WT
4A8 S-Y145Δ+R246I
4A8 S-SA

-2 -1 0 1 2
0

50

100

Log10 µg/mL

%
N

eu
tr

al
iz

at
io

n

A

B
C

D

FE

Fig. 4. Structural basis of public IGHV1-24 plasma antibodies, NTD mutations, and antibody escape.
(A) Side and top views of the structure of CM25 Fab bound to S-ECD shown as cryo-EM density. (B) Focused
refinement density revealing a VH-dominant mode of binding, with substantial contacts mediated by
interactions among the three CDRs and the N3 and N5 loops of the NTD. (C) CDR-H1 interaction includes
a salt bridge formed between the distinctively encoded Glu36 residue and the N5 loop residue Arg246;
the distinctive Phe56 residue in CDR-H2 forms a pi-cation interaction with Lys147 in the N3 loop. (D) The AV
dipeptide interaction with the N3 and N5 loops of the NTD is structurally conserved between mAbs CM25
(red) and 4A8 (pink). (E) Normalized shift (log2) in binding KD, as measured by differential BLI affinities
for single Ala mutants and parental D614G spike protein. (F) Authentic virus neutralization of CM25 and 4A8
against wild-type (WT), double S-N3/N5 loop mutants, and South Africa (SA) B.1.351 viral variant.
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A public anti-COVID antibody repertoire
Most analyses of the antibody responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection have focused on antibodies cloned from memory B cells. This approach has led researchers to conclude that
neutralizing antibodies (nAbs) primarily target the receptor-binding domain (RBD) of the virus's spike protein. Voss et
al. took a different approach, using proteomic deconvolution of the serum immunoglobulin G antibody repertoire from
four COVID-19 convalescent patients. They found that the nAb response was largely directed against epitopes such
as the N-terminal domain (NTD), which lie outside the RBD. Several of these nAbs were shared among donors and
targeted an NTD epitope that is frequently mutated by variants of concern.
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