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Massively parallel profiling of RNA-targeting
CRISPR-Cas13d

Hung-Che Kuo1 , Joshua Prupes1, Chia-Wei Chou 1 & Ilya J. Finkelstein 1,2

CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a
systematic understanding of its RNA binding and cleavage specificity is lack-
ing. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform
(RNA-CHAMP) formeasuring thebinding affinity for > 10,000RNAs containing
structural perturbations and other alterations relative to the CRISPR RNA
(crRNA). Deep profiling of Cas13d reveals that it does not require a proto-
spacer flanking sequence but is exquisitely sensitive to secondary structure
within the target RNA. Cas13d binding is penalized bymismatches in the distal
crRNA-target RNA region, while alterations in the proximal region inhibit
nuclease activity. A biophysical model built from these data reveals that target
recognition initiates in the distal end of the target RNA. Using this model, we
design crRNAs that can differentiate between SARS-CoV-2 variants by mod-
ulating nuclease activation. This work describes the key determinants of RNA
targeting by a type VI CRISPR enzyme.

Class 2 CRISPR-Cas systems are useful for genetic engineering because
they target DNA and/or RNA with a single effector protein1. Among
class 2 enzymes, Cas13 subtypes exclusively target and cleave RNA2–9.
Cas13s process their CRISPR-RNAs (crRNAs), bind a target RNA that is
complementary to the crRNA, and cleave the target RNA (cis-cleavage)
and other RNA molecules via a non-specific RNase activity (trans-
cleavage)10,11. These RNase activities are catalyzed by two Cas13-
encoded higher eukaryotes and prokaryotes nucleotide-binding
(HEPN) domains which can be mutagenically inactivated to convert
Cas13 into an RNA-binding module10,12–14. Due to these activities, Cas13
variants are broadly used in vitro and in cells5,15–17. For example, Cas13d
—one of the most compact and biochemically active Cas13 enzymes—
can efficiently knockdown RNA in mammalian cells and animal
models5,18–25. Moreover, Cas13d fusions are used for RNA tracking,
editing, modification, and splicing regulation5,7,26,27. Cas13d has also
been applied for nucleic acid detection in CRISPR diagnostics28,29.
However, the binding and cleavage specificity of Cas13d on partially
matched target RNAs has not been fully characterized, limiting our
understanding and biotechnological applications of this enzyme.

Biochemical studies have reported various targeting specificities
across Cas13-family enzymes. Some enzymes require a protospacer
flanking sequence (PFS)—a specific sequence adjacent to the target—

for RNA cleavage. For example, LshCas13a prefers a non-G 3’-PFS,
whereas BzCas13b favors non-C 5’-PFS and 3’PFS of NNA or NAN2,3,6.
However, LwaCas13a, PspCas13b, EsCas13d, RfxCas13d (CasRx), and
Cas13X.1 may not require any PFS at all2,4,5,7,13,16,17. The cleavage activity
of LwaCas13a, LshCas13a, and LbuCas13a is sensitive to mismatches in
the central region of crRNA-target RNA duplex2,16,30,31. Large-scale
Cas13d screens in mammalian cells also concluded that Cas13d is lar-
gely intolerant to mismatches in the distal spacer region (positions 15-
21)32,33. Additionally, prior reports suggested that the secondary
structure of the target is negatively correlated with Cas13d targeting
efficiency4,32,34. These experiments primarily use Cas13 cleavage as an
output, conflating binding, activation, and cleavage into a single
reporter. Interpreting studies across different experimental conditions
and target RNAs is especially challenging because RNA structure can
change drastically even with a single nucleotide substitution and may
also impact both binding and cleavage. A complete understanding of
off-target activity requires the biochemical separation of binding and
cleavage across a defined set of structural target RNA and sequence
perturbations.

Here, we describe RNA-CHAMP (Chip-Hybridized Association-
Mapping Platform) for massively parallel profiling of RNA-protein
interactions on a conventional microscope and the nearly ubiquitous
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chips that are discarded at the end of Illumina-based sequencing. Our
approach differs from prior high-throughput methods35,36 that repur-
pose the obsolete Illumina Genome Analyzer IIx instruments and
require custom hardware modifications37. Using RNA-CHAMP, we
characterize how target RNA alterations impact the RNA binding by
Cas13d. Contrary to other Cas13-family enzymes, Cas13ddoes not have
a strong PFS preference. However, nucleotide substitutions that
increase the overall target RNA secondary structure profoundly
decrease the binding affinity. Mismatches and intramolecular base
pairing in the distal region of the target RNA strongly decrease Cas13d
binding. Surprisingly, mismatches in the proximal region of the target
do not affect binding but inhibit nuclease activity. A series of biophy-
sical models of increasing complexity shed insights into the mechan-
ism of Cas13d binding. Together, our results and model suggest that
Cas13d initially recognizes the target RNA in the solvent-exposed distal
spacer region, followed by RNA duplex formation towards the target
RNA in the proximal region. Structural elements in the distal segment
impede Cas13d binding. Using these insights, we design a series of
partially mismatched crRNAs to detect single nucleotide polymorph-
isms (SNPs) in circulating SARS-CoV-2 variants. These results will guide
future RNA editing and CRISPR diagnostics applications. More
broadly, RNA-CHAMPwill enable high-throughputmappingof protein-
RNA interactions in diverse cellular processes.

Results
RNA-CHAMP measures protein-RNA interactions on sequenced
Illumina chips
RNA-CHAMP repurposes Illumina next-generation sequencing (NGS)
chips to quantify millions of protein-RNA interactions (Fig. 1A). RNA
molecules are transcribed in situ from a template DNA library that has
been sequenced using an Illumina MiSeq instrument. We designed the
DNA library with the T7 RNA polymerase (RNAP) promoter, a variable
region of interest, and the RNAP-stalling TerB DNA sequence36,38. This
DNA sequence is recognized by Tus, a bacterial protein that blocks T7
RNAP translocation39,40. The identity and physical coordinates of each
DNA cluster are determined during NGS. After sequencing, the chip is
regenerated to remove leftover fluorescent nucleotides and resyn-
thesize the double-stranded (ds) DNA41. Tus is then added to the chip
to stall T7 RNAP. In vitro transcription (IVT) and subsequent stalling of
T7 RNAP tethers the transcript to its DNA template. Polymerases that
stall prematurely can undergo recycling or exchange with an active
enzyme42. In both scenarios, the transcript is generated after a tran-
scribing RNAP is stalled by Tus.

We first assayed the efficiency of RNA capture on the MiSeq chip.
To confirm that Tus recognizes TerB-encoding DNA clusters, we pur-
ified FLAG-epitope labeled Tus and fluorescently labeled it with an
ATTO488-conjugated anti-Flag antibody43 (Fig. S1A). We sequenced a
library that included DNAs with and without the TerB sequence. Over
90% of TerB-encoding DNA clusters co-localized with fluorescent Tus
(Fig. S1A). The remaining TerB-encoding clusters could not be resolved
by our image processing software, usually due to their spatial overlap.
Importantly, Tus did not bind clusters that lacked TerB. All down-
stream analysis was conducted on TerB-containing DNA clusters. To
confirm that the RNA transcripts are stably retained after IVT, we
hybridized a complementary ATTO647N-labeled oligonucleotide to
the RNA transcripts in situ (Fig. S1B). The chip also included DNA
clusters with scrambled T7 RNAP promoters as negative controls. We
observed an RNA signal from ~90% of promoter-containing clusters,
but not from scrambled promoter clusters (Fig. S1B). These results
demonstrate that RNA-CHAMP can generate libraries of user-defined
RNA molecules on repurposed MiSeq chips.

Next, we characterized the specificity and off-target RNA binding
of Eubacterium siraeum (Es) Cas13d, a prototypical member of the
CRISPR RNA-guided RNA nucleases4,5. We purified nuclease-dead
EsCas13d with an N-terminal SNAP-tag and fluorescently labeled it

with SNAP-Surface-488 (hereafter referred to as “dCas13d”; Fig. S1C).
The ribonucleoprotein (RNP) complex was reconstituted to 100%
homogeneity by incubating dCas13d with a 4-fold excess of the crRNA
followedby size exclusion chromatography.Native gel electrophoresis
confirmed complete RNP formation (Fig. S1D). This procedure was
repeated for RNPs with different crRNAs and used in all subsequent
experiments. The SNAP-tag did not alter the protein’s RNA-binding
affinity, as measured via Biolayer Interferometry (BLI) (Fig. S1E).

Type VI CRISPR-Cas nucleases recognize a protospacer-flanking
sequence (PFS) that is immediately adjacent to the 5’ or 3’ of the target
RNA2–7. To test whether EsCas13d is sensitive to the PFS, we included
three randomized bases on both the 5’ and 3’ of the matched target
sequence. In addition, the target RNA library included up to two mis-
matches, insertions, or deletions relative to the crRNA (Fig. 1B&Source
Data). To confirm that our findings are generalizable across targets, we
also prepared a second library with a different target RNA sequence
but identical design characteristics (Fig. S3 & S4). We sequenced both
RNA libraries to ensure >~10–100 DNA clusters for all library members
(Fig. 1B, right). We also included unrelated DNA sequences as controls
or fiducial markers for downstream image analysis and spatial regis-
tration. After sequencing, the MiSeq chip was regenerated and tran-
scribed with T7 RNAP for downstream experiments.

Transcribed libraries were incubated with increasing concentra-
tions of dCas13d (Fig. 1C, D). Clusters with T7 promoters showed
dCas13d concentration-dependent increases in fluorescence inten-
sities, whereas scrambled promoters showed no dCas13d binding
(Fig. 1C). The fluorescent intensities of clusters across all concentra-
tions were background-subtracted and fit with a Hill equation without
cooperativity to determine the apparent binding affinity (ABA) (Fig. 1D
&Methods)41,44. To directly compare the relative binding affinity across
the entire library, we calculated the change in the binding affinity
(ΔABA) as the natural logarithm of the matched target affinity divided
by partially matched RNA library members (see Methods). The ΔABA
reports the relative change in dCas13d binding affinity of every library
member relative to a reference (matched target) sequence. Two bio-
logical replicates showed excellent reproducibility across the entire
dynamic range of binding affinities (Fig. 1E). In a partially matched
library, we measured the binding affinities for 3893 sequences from
the target library out of 4936 total members (Fig. 1F). The remaining
target RNA sequences had binding affinities or fluorescent signals that
were below our detection limit. Using BLI, we validated a subset of 16
RNA targets across the entire dynamic range of the RNA-CHAMP
experiments, including sequences with mutations in the target RNA as
well as the PFS (Fig. S2). ABAs calculated fromBLI measurements were
in excellent agreement with the sequences fromour library, indicating
that RNA-CHAMP accurately captures the relative affinities of dCas13d
to its target RNA sequences (Pearson’s r =0.89; Fig. 1G, S2). Moreover,
the BLI analysis indicates that the ΔABA is dominated by kon, likely
because the target RNA-crRNAduplex is very stable after hybridization
(Table S1). We conclude that the massively parallel RNA-CHAMP plat-
form can quantitatively profile protein-RNA interactions.

Cas13d requires a partially unstructured target RNA in the
distal region
Wemeasured dCas13d binding affinity with a PFS library consisting of
three random nucleotides on the 5’ and 3’ end of the 22 nt matched
target sequence (target #1) (Fig. 2). We measured ΔABAs for a total of
1457 PFS combinations. The remaining sequences were below our
detection threshold. Although dCas13d exhibited a ~ 3-fold difference
in ΔABAs across the entire PFS dataset, it did not have a strong PFS
preference (Fig. 2A). We observed a similar result in a second target
(target #2) library but with a slight preference for non-G 3’-PFS (posi-
tion −1) (Fig. S3). Combining the top 25% highest ABA binding
sequences in both targets confirms that Cas13d has a weak preference
for the 3’-PFS (Fig. S3D). This weak PFS preference, however, doesn’t
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explain the broad range of ΔABAs that we measured across the library
of matched target RNA sequences.

We reasoned that the targetRNA secondary structure can regulate
Cas13d binding4,32,34. When inspecting both high- and low-affinity tar-
get RNAs, we observed that dCas13d prefers target RNAs that are not
predicted to be base paired in the distal region (positions 11-22)
(Fig. 2A–C & S3A, B)45. For example, the 5’-PFS GUA forms a stem with
the 5’ constant region and exposed positions 19-22, which resulted in
~2-fold stronger dCas13dbinding than5’-PFSUAA (Fig. 2A, B). Similarly,
3’-PFS GCU forms a stem with the 3’ constant region and exposed
position 14-20. These exposed distal nucleotides in 3’-PFS GCU led to

a ~ 2-fold increase in dCas13d binding affinity relative to 3’-PFS UGG
(Fig. 2A, C). BLI measurements independently validated these obser-
vations (Fig. 2D). This also confirms that low-affinity PFSs have a similar
off-rate (kd), but slower on-rates (ka) than high-affinity PFSs (Fig. 2D,
Table S1). These results highlight that RNA structure regulates Cas13d
access to the matched target RNA.

To determine how the local target RNA structure affects Cas13d
binding, we computed the number of predicted intramolecular base
pairs in theproximal (positions 1-11) anddistal (positions 12-22) regions
of the target RNA. Intramolecular base pairs can form with the RNA
outside the target, or within the target itself. For example, the 3’-GCU
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Fig. 1 |Massively parallel protein-RNAprofiling via RNA-CHAMP. ARNA-CHAMP
workflow. DNA is regenerated on the surface of a sequenced MiSeq chip and is
transcribed with T7 RNA polymerase (RNAP). Tus retains T7 RNAP and the asso-
ciated transcript on the DNA. Fluorescent dCas13d is incubated in the chip and the
chip surface is imaged. The variable DNA region (blue) is flanked by a fixed
sequence (light brown) to maintain the same context. The Tus binding site is
labeled in orange. B Top: schematic of the RNA library. The 22-nucleotide target
RNA (blue) is flanked on both ends by three random nucleotides (PFS, gray) and
buffer sequences (light brown). Bottom: summary of the unique DNA sequences in
the synthetic library (left), and the number of clusters observed via NGS for each
unique library member (right). The violin plot illustrates one of the replicates for
target #1, with sample sizes of n = 2083 for PFS,n = 2144 formismatches, n = 167 for
deletions, andn = 2414 for insertions. Theboxextends from the first quartile (Q1) to
the third quartile (Q3) of the dataset, featuring a median line. The whiskers are
defined as Q1-1.5IQR and Q3+ 1.5IQR, where IQR is the interquartile range of the
data. C Fluorescent images of the chip surface after incubating with increasing
Cas13d concentrations. White circles: library clusters. Red circles: scrambled

promoters that cannot produce RNA. Orange circles: fiducial markers used for
image alignment. RNA-CHAMP experiments were conducted in duplicate.
D Quantification of fluorescent intensities for the indicated mismatch sequences.
For example, U10G indicates a U toG substitution at the tenth position in the target
RNA. Solid lines are fit to the Hill equation without cooperativity. Data are pre-
sented as median ± S.D. from all cluster intensities, with sample sizes of n = 26,760
for matched target, n = 86 for U10G, n = 88 for G13U, n = 85 for C21G, and n = 360
for non-target. E Correlation of two independent RNA-CHAMP experiments.
Dashed lines denote the limit ofdetection. Pearson’s r =0.97. FRank-ordered graph
of the ΔABA for ~4000 library members. The dashed line represents the ΔABA of
the matched target (MT). Sequences below our detection limit in (E) are omitted.
G Correlation of the ΔABA and biolayer interferometry (BLI) - determined binding
affinities. Error bars are the standard deviation of ΔABA (RNA-CHAMP) from
bootstrap analysis, and95%confidence interval of thefit (BLI) (clustersnumbers for
RNA-CHAMP can be found in Table S1, three concentrations for BLI). The dashed
line is the linear fit of data points. Pearson’s r =0.89.
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PFS sequence in Fig. 2C has eight proximal and three distal intramo-
lecular base pairs, whereas the 3’-UGG PFS has six proximal and nine
distal intramolecular base pairs. We observed that increased intra-
molecular base pairing in the distal region of the target RNAdecreased
the ΔABA (Fig. 2E, S3C). In contrast, we did not see any relationship
between the number of intramolecular base pairs and the ΔABA in the
proximal region (Fig. 2E, S3C). We also compared the base pairing
propensity of all suboptimal structures that have a free energy within
1 kcal/mol of theMFE. For example, for anRNAwith a predictedMFEof
−14.3 kcal/mol, we compare the average number of intramolecular
base pairs of all suboptimal RNAs with an MFE of −14.3 to −13.3 kcal/
mol. This analysis showed a significant correlation of intramolecular
base pairing and binding affinity in the distal region in both targets but

not in the proximal region (Fig S3E, F). Based on these results, we
hypothesize that Cas13d prefers to engage the distal end of the target
RNA first, and this region must remain partially unstructured for effi-
cient binding (see Discussion). Taken together, we conclude that
Cas13d does not have a PFS requirement but prefers to bind target
RNAs with unpaired distal nucleotides.

Cas13d binding is sensitive tomismatches in the distal region of
the target RNA
To determine how Cas13d binds off-target RNAs that resemble the
target sequence, we constructed a library comprised of 66 single
mismatches, 2079 double mismatches, and 2439 insertions & dele-
tions relative to the crRNAwithin the 22-nt target sequence (target #1)
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(see Fig. 1B). For all experiments, the 5’- and 3’-PFS remained constant.
Of the 4936 library members, we measured ΔABAs for 3893 target
RNAs. 1043 sequences didn’t significantly change the dCas13d fluor-
escent signal, even at the highest RNP concentrations. Figure 3A
summarizes two biological replicates of the ΔABA for all possible sin-
gle mismatches. We also measured ΔABAs across a similarly designed
library but with different target crRNA sequences (target #3) (Fig. S4).
The binding trends were broadly the same across these two libraries.

We first analyzed the impact of a single mismatch between the
target and crRNA (Fig. 3A). Mismatches at positions 13-22 significantly
decreased the ΔABA. In contrast, single mismatches at positions 1-12
had little to no effect on binding compared to the matched target
(Fig. 3A). The identity of the mismatch at the same position led to
profoundly different outcomes. For example, a C21U substitution has a
similar ΔABA to the matched target, but the binding was virtually
undetectable with C21G. The C21U substituted is predicted to match
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the structure of the matched target (Fig. 3D, middle). Moreover, C21U
creates a G-U wobble base pair with the crRNA, which yields a similar
binding affinity to the matched target. C21G, in contrast, creates
additional intramolecular base pairs at positions 19-21 (Fig. 3D, top). In
a dataset with a different crRNA-target pair, we saw a similar but
slightly broader sensitivity region tomismatches at positions 9-20 (Fig.
S4A, B). We compared our binding results to a dataset of RfxCas13d
RNA cleavage activity reported in mammalian cells (Fig. 3B)32. Because
this dataset used different target RNA sequences, we compared the
mean ΔABA from all three mismatches across two targets to the mean
cleavage activity at each position along the RNA target. RNA knock-
downefficiency inmammalian cells is reducedwhenmismatches are in
the distal position, analogously to our binding data (Fig. 3B). Overall,
Cas13d can tolerate G-U wobble base pairs and shows a strong sensi-
tivity to distal mismatches.

Next, we analyzed the impact of two mismatches on dCas13d
binding affinity (Fig. 3C). Binding was largely unaffected if both mis-
matches occurred in positions 1-12 (dark blue squares in Fig. 3C). We
observed multiple instances where the RNA structure drastically
changed the ΔABA. Such sequences appear as “stripes” of strong color
in Fig. 3C. For example, C21U with an additional substitution (high-
lighted in dotted line Fig. 3C) does not affect the ΔABA compared to
the matched target. However, a second mismatch (A20G) in addition
to C21U ablates dCas13d binding due to increased intramolecular base
pairing in the distal region of the target RNA (Fig. 3C, D). Overall, we
observed that dCas13d prefers unpaired distal RNA sequences.We also
observed a strong dependence on RNA structure with the second RNA
library (target #3). This target RNA is highly folded, with only bases 20-
22 not participating in intramolecular base pairing, reducing overall
dCas13d affinity (Fig. S4B, C). For this RNA target, some substitutions
(e.g., U2A, G4U) relax the proximal to center region of the target RNA
(positions 1-13) structure and result in an increased binding affinity
relative to the matched target (Fig. S4C). Cas13d binary structures
suggest that positions 4-8 and 14-20 of the crRNA are solvent-exposed
and accessible to the environment13,14. We speculate that the center
exposed region likely contributes to the increased binding affinity. In
sum, local RNA structure dominates Cas13d binding affinity. The distal
segment of the target RNA must remain partially unpaired for high-
affinity binding.

dCas13d retains a high affinity for targets with proximal insertions
or deletions (Fig. S5, S6). However, insertions and deletions at the
distal side of the target RNAonboth targetswere not tolerated (Fig. S5,
S6). We also observed a strong effect from RNA secondary structure.
For example, inserting a C between positions 19 and 20 reduces the
number of intramolecular base pairs at bases 13-20, which increases
the ΔABA relative to the matched target (Fig. S5A, B). A G-insertion at
the same position leads to undetectably low binding due to newly
formed intramolecularbase pairings in thedistal side of the target RNA
(Fig. S5B). We observed similar effects of RNA structure on binding
affinity in a second RNA target library (target #3) (Fig. S6A, B). A
C-insertion at position 3 exposes the proximal region that retains
similar affinity to the matched target, while a U-insertion increases
intramolecular base pairing and results in undetectable binding. Taken
together, these results again show that Cas13d binding is sensitive to
distal alterations and local secondary structure. We speculate that
Cas13d has a distal seed region and initiates crRNA-target RNA
duplexes starting primarily from the distal region (see Discussion).

Target RNA base pairing is a quantitative predictor for Cas13d
binding affinity
We developed a series of linear regression models of increasing
complexity to quantitatively understand how mismatches and RNA
structure affect Cas13d binding (Fig. 4A). Unlike machine learning
approaches (also considered below), these models can elucidate the
mechanism of Cas13d binding to partially matched targets. The

simplest model (Model I) assigns a position-specific penalty for each
intramolecular base pair in the predicted target RNA structure
(seeMethods & Fig. S7B)45. This model requires a total of 22 adjustable
parameters, one for each nucleotide along the target RNA. In Model II,
we add the predicted minimum free energy (MFE) of the entire 73-nt
transcript RNA to capture the overall secondary structure. Model III
encodes sequence changes relative to the matched target using a
relative encoding strategy (see Methods & Fig. S7A). Model IV adds
the target RNA’s MFE as another parameter to the relative encoding.
Model V combines the intramolecular base pairing penalty and
relative encoding. Finally, Model VI includes all three components:
intramolecular base pairing penalty, relative encoding, and the MFE
(Fig. 4B, C). We trained each model on half of 4,862 partially matched
target sequences across two RNA targets (targets #1 & #3). The
resultingmodelwas testedon thewithheld half of the sequences inour
datasets. After fitting the data, each model’s performance was eval-
uated by Pearson correlation and information loss via Akaike infor-
mation criterion (AIC) (Fig. 4B, C)46.

Model I, which only considers intramolecular target RNA base
pairing within the 22 nt target sequence results in a Pearson’s r = 0.51.
Adding the MFE—a measure of the overall structural stability—only
weakly improved the correlation and AIC, indicating that local RNA
structure is more important than its global stability. Relative encoding
has a lower AIC and a Pearson’s r = 0.65, performing better than the
structure-only model. Finally, combining structural features with
relative encoding (Models V) improves both the AIC and Pearson’s r to
0.75. Adding the MFE (model VI) slightly improved the AIC, indicating
that position-specific mismatches and intramolecular base pairing
propensity are sufficient to describe most of the variance in the ABAs.
(Fig. 4B–D). We also trained a convolutional neural network machine
learning (ML) model on the data (Fig. S7C). Despite having a much
larger number of adjustable parameters, the ML model is only mar-
ginally better than model VI (Pearson’s r = 0.77). Since the ML model’s
parameters are not easily interpretable, it doesn’t reveal the mechan-
isms of RNA binding. Therefore, we dissect Cas13d binding affinities
using Model VI below.

We first compared the average penalty for mismatches and indels
along the 22 nt target sequence (Fig. 4E, top). Cas13d binding is heavily
penalizedwithmismatches or indels at positions 13-22 along the target
RNA. In contrast, mismatches at positions 1-12 only minimally
decreased the ΔABA. Likewise, intramolecular base pairing within the
target RNA nucleotides 14-22 reduces the ΔABA and is heavily pena-
lized by the model (Fig. 4E, bottom). Intramolecular base pairing
within positions 1-13 slightly reduced the ΔABA in themodel. Based on
these results, we conclude that distal positions 12-22 of the crRNA-
target RNA duplex act as an internal “seed” where Cas13d initiates
target RNA recognition (see Discussion).

Proximal mismatches suppress Cas13d’s nuclease activity
Next, we tested how mismatches affect Cas13d’s cleavage activity. We
measured the cleavage rates of nineteen single mismatched target
RNAs that have also been assayed via RNA-CHAMP (Table S2). Time-
dependent cleavage of a reporter RNA (5’−6-FAM-UUUUU-Iowa Black
FQ-3’) can be followed via an increase in the FAM signal after the
fluorophore is released from the quencher (Fig. 5A)28. The cleavage
rate is monitored via the initial slope of the time-dependent fluor-
escent signal. Cleavage rates were generally correlated with ΔABAs,
with two distinct populations (Fig. 5B–D). Proximal mismatches (i.e.,
C2G, C4A, and C7A) did not impact RNA binding but only weakly
cleaved the reporter RNA. In contrast, distalmismatches decreaseboth
the binding and cleavage rates (Fig. 5B–D). We hypothesize that mis-
matches at proximal positions disrupt the protein-RNA interface
required for activation of the HEPN domain.

Next, we assayed key aspects of our mechanistic insights with
Ruminococcus flavefaciens Cas13d (RfxCas13d), as this enzyme is
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widely used for RNA knockdown and engineering applications5,47,48.
RfxCas13dbinding showed amarked sensitivity toRNA structure in the
distal end of the target RNA (Fig. S8A), as measured via BLI. This
binding sensitivity was strongly correlated between EsCas13d and
RfxCas13d (Pearson r =0.93), indicating a similar target recognition
mechanism (Fig. S8B). As with EsCas13d, proximal mismatches C2G,
C4A, and C7A showed very high binding affinities, but compromised
cleavage (Fig. S8C, D). Taken together, we conclude that RfxCas13d
and EsCas13d both penalize binding to target RNAs with distal mis-
matches and structures, and both exhibit a proximal cleavage sensi-
tivity region.

Cas13d’s mismatch sensitivity can be exploited to rationally
design assays that detect single nucleotide polymorphisms (SNPs) in a
target RNA49. As a proof of principle of our analysis pipeline, we
positioned the SNP in the crRNA-target RNA duplex to differentiate
between two SARS-CoV-2 variants of concern (VOC) (Fig. 5E). Here,
the matched target is from the spike gene of SARS-CoV-2. The G→A
single nucleotide polymorphism (SNP) differentiates the original
“Wuhan” strain and the Delta VOC. We designed two crRNAs: the first
places this SNPwithin the binding sensitivity region (crRNA-1; position
17), and the second is in the cleavage sensitivity region (crRNA-2;
position 1). Both crRNAs reduceCas13d cleavage ~5-fold for the D950N
RNA (Fig. 5F, G & Table S2). Next, we measured the binding affinity of
Cas13d with crRNA-1 and crRNA-2 to both the Wuhan and Delta var-
iants using BLI. As expected, crRNA-1 RNPs only had a weak affinity for
the D950N RNA (Fig. S8E, F). In contrast, crRNA-2 RNPs had a com-
parable binding affinity for both target RNAs (Fig. S8E, F). To confirm
that the less efficient cleavage of the Delta variant is not due to RNA

structural changes, we analyzed the predicted MFE structure. The SNP
in this sequence doesn’t alter the RNA structure (Fig. S8G). As expec-
ted, the cleavage rate of the crRNA that matches the Delta sequence is
statistically indistinguishable from the cleavage rate of the original
matched target crRNA (Fig. S8H, I). The results confirm that the SNP
indeed alters the cleavage activity, and the effect is due to the position
of the mismatch relative to the crRNA. These results demonstrate that
our analysis pipeline can be used to design Cas13d-based diagnostics
that distinguish between SNPs by precisely positioning the expected
mismatched positions relative to the crRNA.

Discussion
RNA-CHAMP is a massively parallel platform for probing protein-RNA
interactions on used NGS chips. Unlike earlier approaches, CHAMP
does notmodify any Illumina hardware and is compatiblewithmodern
sequencers and chip configurations35–38. Imaging biomolecules on
upcycled NGS chips can be adapted by any laboratory with a com-
mercial fluorescence microscope that is capable of either TIR- or epi-
illumination and a wide-field camera41,44,50. In addition to profiling
protein-DNAandprotein-RNA interactions, relatedmethodshavebeen
adapted for peptide display and other imaging applications51–53. We
envision that the high optical quality and surface passivation of com-
mercial Illumina chips will extend tomassively parallel single-molecule
imaging.

Using RNA-CHAMP and quantitative modeling, we show that
Cas13d has a “seed region” that prefers a relaxed structure at the distal
end of the target RNA (Fig. 6). This region is analogous—but not
functionally identical—to the PAM-adjacent seed found in Cas9 and
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DNA-binding CRISPR enzymes54–58. The impact of the Cas13d seed is
especially profoundwhen the target RNA is perfectlymatchedwith the
crRNA. Strong intramolecular base pairing due to changes in the PFS
reduces Cas13d binding by over 3-fold relative to a perfectly matched
target. Our results highlight that future studiesmust also consider how
the target RNA structure changes enzyme activity. Mismatches can
increase the binding affinity when they coincidentally relax intramo-
lecular base pairing within the target. By separating the effect of RNA
structure on binding and cleavage, our results explain prior observa-
tions that minimal secondary structure in the target RNA correlates
with higher cleavage activity in bacterial and mammalian cells4,30,32,34.

Here, we show that Cas13d binding to the target RNA is penalized
when the distal region is structured or is mismatched relative to the
crRNA. Target RNAs with the distal region occluded by intramolecular
base pairing show significant binding defects. Structures of the binary
RspCas13d- and EsCas13d-crRNA complexes reveal a solvent-exposed
spacer region in positions 4-8 and positions 14-20 relative to the
crRNA13,14. Based on the large effects of intramolecular base pairing in
the distal position (positions 14-20), we hypothesize that Cas13d

initiates target recognition in this distal region (Fig. 6). Structure of
ternary EsCas13d complex suggests that the helical-1 domain has the
largest conformational shift compared to other subdomains. Helical-1
domain residues K376, N377, G379, K443, and Y447 are centered
around the proximal region of the crRNA (positions 3-6). Mutating
residues K376, K443, and Y447 to alanine fails to activate the HEPN
domains13. Disruption of the protein-RNA interface by either a mis-
matched base pair or helical-1 amino acid mutations inactivates the
nuclease. This indicates that the interaction of the proximal crRNA
region and the helical-1 domain is critical for nuclease activation.
Further kinetically resolved structural studies will be required to elu-
cidate themechanismsof target recognition, RNAduplex propagation,
and HEPN nuclease activation.

We separately dissect RNA binding and cleavage to reveal that a
subset of mismatched sequences can bind with high affinity but fail to
activate the nuclease domain (Fig. 6). Cas13d requires base pairing in
positions 1-6 to activate its nuclease activity. We leverage this sensi-
tivity to develop guides that can discriminate between circulating
SARS-CoV-2 variants. Similarly, LbuCas13a positions 5-8 are critical for

Fig. 5 | Proximal mismatches limit Cas13d cleavage activity. A Schematic of the
collateral cleavage assay. B Fluorescent cleavage time courses for matched target
and nine representative mismatched target RNAs. Blue lines are distal mismatched
sequences (positions 12-22). Orange lines are proximal mismatched sequences
(positions 1-11). C The initial slope of 19 mismatched sequences. Slopes are calcu-
lated by the fluorescence changes during the first 20minutes of the cleavage
reaction and normalized to the matched target. Data are shown as mean and S.D.
from two replicates. D Correlation of the cleavage slope with binding affinity

(ΔABA). A subset of target RNAs retain strong binding but are cleavage-inactive
(boxed region). Data are shown in mean ± S.D. from bootstrap analysis (y-axis). All
sequence counts are detailed in the Source Data. E Schematic ofmismatch-defined
differentiation between SARS-CoV-2 variants of concern (VOC). F Fluorescent
cleavage time courses for SARS-CoV-2Wuhan andDelta VOCs.GThe initial slope of
the trace in (F). Slopes are calculated by the fluorescence changes during the first
20minutes of the cleavage reaction. Data are shown as mean and S.D. from three
replicates.
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cleavage but not binding31. Thismay act as an additionalmechanism to
suppress nuclease activation and subsequent cell death in prokaryotic
hosts. Mismatch-dependent cleavage inactivation may be a universal
feature of type VI effectors.

We conclude that Cas13d binding and nuclease activation are
governed by distinct spacer-target regions. Mismatches and structural
elements in the distal region inhibit binding, whereas proximal mis-
matches block nuclease activation. These effects, along with the bio-
physical models developed here, can be selectively used to fine-tune
knock-down efficiency in cells by programming mismatches along the
crRNA-target RNA duplex. A similar approach has been used to fine-
tune CRISPRi with nuclease-dead Cas9 in mammalian cells59. In addi-
tion, a complete understanding of Cas13d binding and activation can
be used for sensitive SNP detection in CRISPR diagnostics (Fig. 5)15.
More broadly, quantitative studies of RNA-binding CRISPR enzymes
must consider the impact of RNA structure on target binding and
nucleolytic activity. The structural basis for type VI nuclease activation
and the implications for gene editing and prokaryotic immunity are
exciting areas for future research.

Methods
Oligonucleotides and DNA libraries
Primers, protospacer flanking sequence DNA libraries, crRNAs, and
target RNAs were purchased from IDT. Mispaired target DNA oligo-
nucleotide libraries were purchased from Twist or GenScript. DNA
libraries for probing the protospacer flanking sequence (PFS) were
generated via PCR amplification (Q5 High-Fidelity 2XMasterMix, NEB)
of a 6N-oligo ordered from IDT with primers JK044 and JK045
(Table S3). Thesemixed basedoligos included three randomizedbases
on either end of the target RNA. After PCR, Illumina adapters and
sequencing primer attachment sites were added for downstreamnext-
generation DNA sequencing (NGS). Final amplified libraries were
constructed as 5’-P5-SP1-buffer sequence-T7 promoter-PFS-target-PFS-
SP2-TerB-P7-3’. P5 and P7 are Illumina adaptors, while SP1 and SP2 are
Illumina sequencing primers. For mispaired DNA oligonucleotide
libraries, we designed a custom oligonucleotide DNA pool (purchased
from Twist or GenScript). The DNA pool was PCR amplified using
primers JK044 and JK045. These primers also added adapters for
Illumina-based sequencing. The PFS and mispaired DNA libraries were
pooled and sequenced on a conventional MiSeq instrument using a
150-cycle reagent kit v3 (Illumina). To prevent data loss due to

sequencing a low diversity library, we also spiked in sheared human
cDNA and PhiX DNA to a total of 50% of the sequencing run.

Protein Expression and Purification
Eubacterium siraeum Cas13d (EsCas13d) was subcloned into a pET19-
based plasmid with an N-terminal 6xHis-TwinStrep-SUMO fusion to
generate plasmid the pIF1023 from pET28a-MH6-EsCas13d (Addgene
#108303). The nuclease-dead variant (dCas13d) was generated by
introducing the following mutations into the HEPN active site: R295A/
H300A/R849A/H854A. The SNAP-tag was added at the N-terminus of
dCas13d (pIF1024). Ruminococcus flavefaciens Cas13d (RfxCas13d, or
CasRx) was subcloned into a pET19-based plasmid with an N-terminal
6xHis-TwinStrep-SUMO fusion to generate the plasmid pIF1034 from
pET28b-RfxCas13d-His (Addgene #141322). The nuclease-dead variant
(dRfxCas13d) was generated by cloning the R295A/H300A/R858A/
H863A mutations into the HEPN active site.

Catalytically active and nuclease-dead variants of EsCas13d and
RfxCas13d were purified using the same protocol. Briefly, the over-
expression plasmid was transformed into BL21 star (DE3) cells
(ThermoFisher). Cellswere inoculated in LB containing carbenicillin to
OD600 ~ 0.7 and induced with 200mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) at 18 °C for 18 h. Cells were then pel-
leted, resuspended in lysis buffer (50mMHEPES pH 7.4, 500mMNaCl,
1mM EDTA, 5% glycerol, 0.1% Tween-20, 1mM DTT, cOmplete-EDTA-
free protease inhibitor cocktail (Sigma Aldrich), 1mgml−1 lysozyme,
2.5 Uml−1 DNaseI, 2.5 Uml−1 salt active nuclease), and lysed completely
by sonication. Clarified lysate was applied to a Strep-Tactin Superflow
gravity column (IBA Life Sciences). The Strep-Tactin resin was washed
with 20 column volumes (CVs) of wash buffer (50mM HEPES pH 7.4,
500mM NaCl, 5% glycerol, 1mM DTT), eluted with 5 CVs of elution
buffer (50mM HEPES pH 7.4, 500mM NaCl, 10% glycerol, 5mM D-
desthiobiotin, 1mM DTT), and then concentrated by a spin con-
centrator (Amicon 30 kDa cutoff Ultra 15, Millipore). Concentrated
samples were incubated with homemade SUMO protease for tag
cleavage, and with SNAP-surface 488 dye (NEB), if used for RNA-
CHAMP experiments at 4 °C for 20h. Samples were then further pur-
ified by a size-exclusion column (Superdex 200 Increase 10/300GL, GE
Life Sciences) using SEC buffer (50mMTris-HCl pH 7.5, 500mMNaCl,
10% glycerol, 2mM DTT).

For ribonuclear protein (RNP) reconstitution, purified dCas13d
was incubated with a six-fold excess of CRISPR RNA (crRNA; from IDT)

Unstructured RNA

Proximal mismatched RNA

x

Matched target

x

Distal mismatched 
& structured RNA

Fig. 6 | Cas13d binding and nuclease activation follow distinct rules. Cas13d
binding is penalized by distal RNA structures and mismatches. After initial distal
recognition, the RNA duplex forms from the distal positions to the proximal

positions. A mismatch in the proximal region fails to activate the nuclease activity,
leading to a catalytically inactive enzyme. Matched target sequences that form a
complete RNA duplex activate the nuclease activity.
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at 37 °C for 1 h in RNP buffer (50mM Tris-HCl pH 7.5, 100mM NaCl,
6mMMgCl2, 1mMDTT), and again subjected to size-exclusion column
(Superdex 200 Increase 10/300 GL, GE Life Sciences) to further sepa-
rate the RNP from the crRNA by using RNP SEC buffer (50mMTris-HCl
pH 7.5, 150mM NaCl, 1mM MgCl2, 10% glycerol, 1mM DTT). RNP
fractions were pooled, spin concentrated (Amicon 30 kDa cutoff Ultra
15, Millipore), flash frozen in liquid nitrogen, and stored at −80 °C.

RNA-CHAMP
MiSeq chips were collected after sequencing and stored at 4 °C in
storage buffer (10mM Tris-HCL pH 8.0, 1mM EDTA, 500mM NaCl)
until needed. The chipswereplacedon a custom-designedmicroscope
stage adapter with integrated microfluidics. The buffer perfusion flow
rate was controlled via an automated syringe pump (KD Scientific) and
kept constant at 100 µl min−1 for all washing steps. The schematics and
CAD files for the microscope stage designs and all additional compo-
nents are available at https://github.com/finkelsteinlab/RNA-CHAMP.

The chip surface was regenerated after sequencing to remove
leftover fluorescent nucleotides and the synthesized strand. The chip
was denatured with 500 µl of 0.1N NaOH and washed with 500 µl TE
buffer (10mM Tris-HCl pH 8.0, 1mM EDTA). The chip was then incu-
bated with 500nM regeneration primers IF363 and IF443 (see
Table S3) in hybridization buffer (5X SSC [750mM NaCl, 75mM
sodium citrate pH 7.0], 0.1% Tween-20) for 5min at 85 °C, cooled to
65 °C over 10min, cooled to 40 °C over 30min, and held at 40 °C for
10min. During the last 10min at 40 °C, the chip was washed with 1mL
wash buffer (0.3X SSC [45mM NaCl, 4.5mM sodium citrate pH 7.0],
0.1% Tween-20) to remove unannealed primers.

Formost Cas13d binding experiments, concentration gradients of
0.125 nM, 0.25 nM, 0.5 nM, 1 nM, 2 nM, 4 nM, 8 nM, 16 nM, 32 nM,
64 nM, and 128 nM of Cas13d were sequentially incubated in the chip.
At each concentration, Cas13d was incubated for 10min at 25 °C. Then
Cas13dwaswashedout by 300 µl of proteinbuffer (40mMTris-HCl pH
7.5, 150mM NaCl, 6mMMgCl2, 1mM DTT, 0.1% Tween-20, 0.2mg/ml
BSA). The fluorescent images were acquired on a TIRF microscope as
previously reported41. After every imaging experiment, chips were
treated with protease K (80 units/ml) diluted in TE buffer (10mMTris-
HCl, 500mM EDTA) for 30min at 42 °C.

RNA-CHAMP data analysis
Raw images are run through a CHAMP alignment and intensity calcu-
lation pipeline41. To background subtract the fluorescent buildup on
the surface of the chip, the signal from clusters without a T7 promoter
was subtracted from the signal for clusters corresponding to RNA
library members. Sequences that were represented by five or more
physical RNA clusters were globally fit via the Hill equation without
cooperativity to calculate the apparent Kd, Imax, and Imin:

Iobs =
Imax � Imin

1 + Kd
x

+ Imin ð1Þ

Where Imin is the minimum intensity for the fit, Imax is the maximum
intensity for the fit. x is the concentration, and Iobs is the observed
intensity. To prevent over-interpretting the fitting result, sequences
that showed maximum fluorescence intensities below 20% of the
matched target intensity were considered “weak binders” and not
included in our analysis. Only sequences within our detection limit
were included in the analysis (e.g., data within the dashed line in
Fig. 1E). We report these as not determined (N.D.). Apparent Kd was
transformed to change in the apparent binding affinity (ΔABA) by
log

KdðmtÞ
KdðsÞ

� �
, where KdðsÞ is the Apparent Kd of a library sequence and

KdðmtÞ is the apparentKd of thematched target. Finally, all experiments
were repeated two or more times. For RNA structure prediction, RNA
structures were predicted by RNAfold from ViennaRNA45 using default
settings.

Biolayer Interferometry
Binding kinetics were assessed via biolayer interferometry on anOctet
RED96e (FortéBio). Biotinylated RNAs in Table S4 was immobilized on
streptavidin biosensors (FortéBio). The biosensors were subsequently
submerged in protein buffer (40mM Tris-HCl pH 7.5, 150mM NaCl,
6mM MgCl2, 1mM DTT, 0.1% Tween-20, 0.2mg/ml BSA) containing
dEsCas13d RNP complex at concentrations of 100 nM, 50nM, and
25 nM for 600 seconds to measure association. The biosensors were
transferred to protein buffer for 600 seconds tomeasure dissociation.
The dRfxCas13d experiments were conducted using a single con-
centration (25 nM). We also acquired the signal from a reference sen-
sor without any dCas13d RNP. This trace was treated as a baseline and
subtracted from all other association and dissociation curves. The ka,
kd, and Kd values were calculated from global fitting to all the binding
curves by using Octet data analysis software v11.1. All BLI measure-
ments are summarized in Table S1 and the Source Data.

Collateral cleavage fluorescent assay
Catalytic active Cas13d was purified as described above. 50nM of
Cas13d were incubated with 50nM of poly-U reporter (5’−6-FAM-
UUUUU-Iowa Black® FQ-3’, IDT) and 5 nM of the indicated target RNA
(IDT; Table S4). The reactionwas incubated in a 96-well plate in the RT-
PCR system (ViiA 7) at 25 °C. Fluorescent intensities were detected
everyminute for a total duration of 120min. Technical duplicates were
done in every plate, and two or three biological replicates were done
for each sequence. The mean of the technical duplicate of one
experimentwas shown in theplot. A subset of themismatch sequences
was produced by in vitro transcription (IVT). The IVT templates were
generated by hybridizing two oligos that contains the T7 promoter
sequence (IDT; Table S3). IVT reactions were performed by using the
HiScribe T7 High Yield RNA Synthesis kit (NEB). IVT products were
subsequently purified by RNeasy mini kit (Qiagen). The initial slope at
the 20min time point was calculated to quantitatively compare the
cleavage activity. All fluorescent cleavage data are summarized in
Table S2 and the Source Data.

Computational modeling
Toextractmechanistic insights intooff-targetRNAbinding,we created
generalizedmodels across all target RNA experiments. First, allΔABAs
were normalized to be between 1 and 0 for the upper and lower
detection limits, respectively. Model I solely considers intramolecular
base pairing across the 22 nucleotides target RNA according to the
function below. The RNA structure was predicted by ViennaRNA45. The
model adjusts the 22parametersai, one for eachbase in the target RNA
sequence:

f BP ðiÞ=
1, if position iwas based paired with other bases

0, Otherwise

�

Model I : dkΔABA =
XN

i= 1

ai*f BP ðiÞ ð2Þ

Model II includes an additional term, gðkÞ, the predicted minimal
free energy (MFE) in kcal mol−1 of sequence k (predicted by RNAfold
from ViennaRNA45).

Model II : dkΔABA =
XN

i= 1

ai*f BPðiÞ+ e*gðkÞ ð3Þ

Model III is the relative encoding-only model and has three main
terms that summarize the relative penalties for insertions (I), deletions
(D), or mismatches (M) in the target sequence relative to the matched
target. As an example, consider a sequence with C2G and U10A
alteration compared to the matched target strand, kmt . These
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operations can be conceptually written as:

fðMismatch,2,GÞ,ðMismatch,10,AÞg

Thus f M 2,Gð Þ and f M 10,Að Þwould evaluate to 1 and all other inputs
for f x would evaluate to 0. There was a total of 9 parameters for each
RNA position: deletion, insertion A, insertion U, insertion G, insertion
C, mismatch A, mismatch U, mismatch G, and mismatch C. Here, i
denotes the sequence position, v is the altered RNA base identity, and
b, c, d are the three sets of adjustable parameters.

f xði,vÞ=
1, if oper x used to transf romkmt to k

0, Otherwise

�

Model III : dkΔABA =
X
i2 I

bi,v*f I ði,vÞ+
X
i2D

ci*f Dði,0Þ+
X
i2M

di,v*f M ði,vÞ ð4Þ

Model IV includes an additional MFE term, gðkÞ, as previously
described.

Model IV : dkΔABA =
X
i2 I

bi,v*f Iði,vÞ+
X
i2D

ci*f Dði,0Þ

+
X
i2M

di,v*f M ði,vÞ+ e*gðkÞ
ð5Þ

Model V is the combination of Model I andModel III that includes
both intramolecular base pairing and relative mismatch/indel encod-
ing.

Model V : dkΔABA =
X22

i = 1

ai*f BPðiÞ+
X
i2 I

bi,v*f I ði,vÞ+
X
i2D

ci*f Dði, 0Þ

+
X
i2M

di,v*f M ði,vÞ
ð6Þ

Model VI has the following parameters: base pairing, relative
encoding, and the MFE of the predicted lowest-energy structure. The
normalized ΔABA for partially matched RNAs, k, that are related to
the matched target, kmt , was modeled using a linear combination of
the following features. f x i,vð Þ denotes different types of sequence
alteration and RNA accessibility in the model, where BP, I, D, and M
were base pairing, insertions, deletions, and mismatches respectively.

Model VI : dkΔABA =
X22

i = 1

ai*f BP ðiÞ+
X
i2 I

bi,v*f I ði,vÞ+
X
i2D

ci*f Dði,0Þ

+
X
i2M

di,v*f M ði,vÞ+ e*gðkÞ
ð7Þ

The weights of the terms ai, bi,v, ci,di,v, and e are the adjustable
parameters that are used to fit the experimental data and represent the
penalties of each operational transformation on altered sequences k in
the library.

Ridge regression was used to determine the weights of our
parameters to fit the experimental training set. Ridge regression is a
variant of linear regression that attempts to minimize the training loss
value of the expression:

X
k 2Ttr

ðMðkÞ � kABAÞ2 + λ
X
β2X

β2

Where M is defined to be the model for predicting ABA with all the
weights β being values in set X = {ai, bi, ci, di, e}. The predicted values
fromModel M are compared to the measured ΔABA values, k4ABA: the
smaller the absolute difference between the two the greater the
model’s accuracy. Ridge regression helps maintain the robustness of
linear models and prevents overfitting by penalizing arbitrarily large

weights. The parameter λ at which the weight values in the model
appear to stabilize is around 1 which was used throughout all models.

Finally, we considered a sequential convoluted neuron network
(CNN) model. The model was built on a single Conv2D layer with 64
filters and a kernel size of 54 × 160. Then, a final layer of MaxPooling2D
with a pool size of 3 × 1 was added. The CNNmodel was trained by the
same dataset used in the simple linear model. The dataset has
4862 sequences, and only half of the sequences were used for training
the model. The model was trained through 1000 epochs and was
tested on the rest of the sequences.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
BLI and fluorescent cleavage data is available in the Supplementary
Table S1, S2, and Source Data file. RNA-CHAMP data is available in the
Source Data file. Source data are provided with this paper.

Code availability
Source code associated with this work is available on GitHub: https://
github.com/finkelsteinlab/RNA-CHAMP.
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