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The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed to target sites 
via a single guide RNA (sgRNA). However, SpCas9 also binds and cleaves genomic off-target sites that are 
partially matched to the sgRNA. Here, we report a microscopic kinetic model that simultaneously captures 
binding and cleavage dynamics for SpCas9 and Sp-dCas9 in free-energy terms. This model not only 
outperforms state-of-the-art off-target prediction tools, but also details how Sp-Cas9’s structure-function 
relation manifests itself in binding and cleavage dynamics. Based on the biophysical parameters we extract, 
our model predicts SpCas9’s open, intermediate, and closed complex configurations and indicates that R-
loop progression is tightly coupled with structural changes in the targeting complex. We show that SpCas9 
targeting kinetics are tuned for extended sequence specificity while maintaining on-target efficiency. Our 
extensible approach can characterize any CRISPR-Cas nuclease – benchmarking natural and future high-
fidelity variants against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to 
increased specificity and efficiency in engineered systems. 

CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats – CRISPR associated protein 9) is a 
ubiquitous tool in the biological sciences1,2 with applications ranging from live-cell imaging3 and gene 
knockdown/overexpression4,5, to genetic engineering6,7 and gene therapy8,9.  Streptococcus pyogenes (Sp) Cas9 
is programmed with a ~100 nucleotide (nt) single-guide RNA (sgRNA) to target DNAs based on the level of 
complementarity to a 20 nt segment of the sgRNA10. Wild type SpCas9 (Cas9 from now on) induces specific 
double-stranded breaks and the catalytically ‘dead’ Cas9 (dCas9) mutants allow for binding the target DNA 
without cleavage3,5. Apart from complimentary on-targets, Cas9-sgRNA also binds and cleaves partially-
complementary off-target DNA sites 11–18. Off-target cleavage risks unwanted genomic alterations, including 
point mutations, large-scale deletions, and chromosomal rearrangements19. The potentially deleterious effects 
associated with such editing errors impedes wide-spread implementation of the CRISPR toolkit in human 
therapeutics.   

Off-target sites are identified in silico by a growing set of prediction tools. These tools use bioinformatics20,21, 
machine learning22,23, and heuristic12,14,24,25 approaches to rank genomic sites based on their own unique off-
target activity scores. However, none of these tools attempt to model the microscopic kinetic properties that 
govern Cas9-DNA binding and nuclease activation. This quantitative kinetic modeling is essential for 
understanding how in vivo Cas9 activity depends on enzyme concentration and exposure time. Both of these 
parameters are frequently exploited by experimentalists to limit off-target activity in cells26.  

Quantitative predictions of Cas9 activity requires a physical model that accounts for the kinetic nature of the 
problem. Existing physical models24,27 implicitly assume that Cas9-sgRNA binding equilibrium is reached over 
the entire genome before DNA cleavage. However, binding does not necessarily equilibrate before 
cleavage28,29, as can be inferred from the fact that binding and cleavage correlate weakly in vitro and in cells30–
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32 (see below). Here, we construct a comprehensive kinetic model that includes binding and cleavage reactions, 
and globally train it on two high-throughput in vitro datasets that capture each process separately15. Our fully 
parameterized model accurately predicts an independent high-throughput dataset11, without the use of any 
additional fitting parameters. Our model is parameterized in terms of physical quantities and therefore offers 
insights into biophysical mechanisms. By establishing the free-energy landscape of the targeting reaction with 
any off-target, which shows that the difference in binding and cleavage activities30–39 stems from a (relatively) 
long-lived DNA-bound intermediate. We further show that this state is tuned for both high cleavage specificity 
and on-target cleavage efficiency. We also connect the binding intermediate to the intermediate HNH-
conformation observed in single-molecule FRET experiments40,41, and argue that the conformational change is 
driven by R-loop formation. Finally, we show that our kinetic model outperforms the two best-performing 
genomic off-target prediction tools used today12,24,42. 

Results  
Kinetic model simultaneously captures binding and cleavage profiles  
Figure 1a describes the microscopic kinetic schema that underpins our physical Cas9 binding and cleavage 
model. First, the Cas9-sgRNA ribonucleoprotein complex recognizes a 3nt protospacer adjacent motif (PAM) 
DNA sequence—canonically 5'-NGG-3'—via protein-DNA interactions43,44. Binding to the PAM sequence opens 
the DNA double helix, and allows the first base of the target sequence to hybridize with the sgRNA43,44. The 
DNA double helix further denatures as the sgRNA and target strand form an RNA-DNA hybrid (R-loop)45–48. The 
R-loop grows and shrinks in single nucleotide steps until it is either reversed and Cas9 dissociates, or it reaches 
completion (a 20 nt hybrid). If the R-loop reaches completion, Cas9 uses its HNH and RuvC nuclease domains 
to cleave both strands of the DNA duplex49. 

The most general reaction schemes for cleavage and binding are completely parameterized only when we 
estimate all the rates shown in Fig. 1a for every potential guide-target combination—a prohibitively large 
number of parameters for any genome. To render parameter estimation tractable, we make four mechanistic 
model assumptions: (1) mismatch positions within the hybrid are more important than mismatch types—e.g. 
G-G vs. G-A (as can be inferred directly from data11,15), and all 12 mismatch types can be treated equally; (2) 
dCas9 differs from Cas9 only in that dsDNA bond-cleavage catalysis is completely suppressed, and all other 
rates can be taken to be identical between the two40,50; (3) a mismatch influences only the reversal of the 
mismatched base pairing, leaving all other rates unchanged; (4) all hybrid-bond-formation rates are equal, and 
independent of complementarity. These assumptions are justified post hoc by showing that the targeting 
dynamics are completely determined by even a much smaller set of effective rates. Though our model is kinetic, 
we can use the detailed-balance condition for microscopic rates (Supplementary Information) to define the 
free-energy of each state in our model (Fig. 1b). Our model assumptions reduce the total number of parameters 
to 44: the (concentration dependent) rate of PAM binding from solution (𝑘!") and the associated free-energy 
cost; a single internal forward (bond-formation) rate (𝑘#); 20 free-energy costs dictating R-loop progression for 
matching guide and target; 20 free-energy penalties for mismatches at different R-loop positions; and, for Cas9, 
the rate at which the final cleavage reaction is catalyzed (𝑘$%&) (see Supplementary Information for further 
details). When extending the R-loop, both gains and losses in free-energy are possible as base-pairing 
interactions, protein-DNA interactions50, and any induced conformational changes40,41,49,51 all contribute to the 
stability of the Cas9-sgRNA-DNA complex. As we assume that mismatches only facilitate the reversal of the 
mismatched base pairs, the entire free-energy landscape will rise by a positive amount from the mismatch 
onwards (c.f. pink and blue free-energy landscapes in Fig. 1b). 

We used three high-throughput assays to train and validate our kinetic model. The first training data set 
estimates the effective cleavage rates (𝑘$'() for a library of off-target DNA sequences by monitoring the fraction 
of uncut DNA over time15 (NucleaSeq in Fig. 1c; Supplementary Information). The second training data set 
reports on the effective association constant (𝐾)) over a library of off-target DNA sequences exposed to dCas9-
sgRNA for 10 min15,52 (CHAMP in Fig. 1d; Supplementary Information). The third data set, used for validating 
the model, reports the effective association rate estimated over 1500 seconds of exposure to dCas9-sgRNA at 
1nM concentration (HiTS-FLIP in Fig. 1e; Supplementary Information)11. Our kinetic model describes all these 
experiments even though each dataset uses either Cas9 or dCas9 to report on the cleavage rates, association 
constants, or association rates by sweeping either concentration or time28.   

We trained the kinetic model on DNA binding (CHAMP) and cleavage (NucleaSeq) datasets collected using the 
same sgRNA and mismatched target DNA library15. The parameters were globally fit to the binding affinities 
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and cleavage rates for all off-target DNA sequences with up to two mismatches. The rates from different types 
of mismatches were averaged together (Supplementary Information). Although these two datasets do not 
correlate well with each other directly (55%, see Supplementary Figure 1a), our model reproduces effective 
cleavage rates (Fig. 1c) and effective association constants (Fig. 1d) with a high correlation (86% and 99%, 
respectively; Supplementary Figures 1b and c). As validation, our model accurately captures a third, 
independent dataset of dCas9 effective association rates11 (Fig. 1e) with a correlation of 97% (Supplementary 
Figure 1d), and without the use of additional fitting parameters. Our model also predicts the CHAMP data for 
sequences with more than 2 mismatches, even though these were not included in the training data 
(Supplementary Figures 1e and f). We conclude that our model accurately captures the physics of DNA binding 
and cleavage by Cas9.  

 

 

Fig. 1| A kinetic model captures both binding and cleavage data. a, Reaction schema underlying the proposed kinetic model 
(Supplementary Information for details). An available (d)Cas9-sgRNA from solution binds a DNA sequence (either on- or off-target) at its 
PAM site (blue rectangle) with rate 𝑘!". R-loop formation then proceeds in one base-pair increments. A partially formed R-loop containing 
𝑛 base pairs can either extend one base pair at a rate 𝑘#(𝑛) or shrink one base pair at a rate 𝑘$(𝑛) . A complete R-loop (20 base pairs) is 
cleavage competent, and a dsDNA break is catalyzed at a rate 𝑘%&'. For dCas9, cleavage catalysis is not available, and 𝑘%&' = 0. b, Illustration 
of a possible free-energy landscape for Cas9-sgRNA-DNA for the on-target (pink) and an off-target with mismatches placed at positions 3 
and 15 (blue).  Each mismatch raises the entire free-energy landscape starting from the position where it occurs. c, Effective cleavage rates 
and d, effective association constants as measured by and simultaneously fitted (Supplementary Information) to the NucleaSeq and 
CHAMP datasets (Jones at el.). Off-targets with one mismatch are show on top and off-targets with two mismatches are shown at the 
bottom (data above and model below diagonal), both as a function of mismatch position(s). e, Model prediction for effective binding rates 
as a function of mismatch position(s) compared to both HiTS-FLIP data and data from Boyle et al. top: one mismatch; bottom: two 
mismatches, with experimental data above and model results below the diagonal. 
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Internal R-loop states are tuned for cleavage specificity without loss of on-target efficiency  
To gain mechanistic insights into the targeting reactions, we investigated the estimated free-energy landscape 
and kinetic parameters (Fig. 2) resulting from the simultaneous fit to our training datasets Figs. 1c,d). Starting 
from the PAM-bound state, the on-target free-energy (Fig. 2a) increases substantially when forming the first 
hybrid base pair and remains relatively high until the 8th base pair is formed. This initial barrier must be 
bypassed before a stable binding intermediate is reached with about 11 or 12 hybridized base pairs. The free-
energy landscape reveals a second barrier to forming a full R-loop (13-18 bp), and eventual cleavage. The 
penalty for a mismatch (Fig. 2b) contains contributions from both DNA-RNA base pairing and protein-
nucleotide interactions. Still, the mismatch penalties remain rather constant throughout (6±1	 𝑘*𝑇), with 
notable exceptions being positions 2, 18 and 20.   

 
Fig. 2| Microscopic parameter estimated from NucleaSeq and CHAMP datasets. a, The 
free-energy landscape of the on-target reaction along the states shown in Fig. 1a. Here 
sol. is the solution state, PAM is the PAM-bound state and numbers indicate the number 
of R-loop base pairs formed. b, Energetic penalties for mismatches as a function of 
position. c, The three forward rates. In all panels, the global fit with the lowest chi-squared 
is shown in pink (Supplementary Information), and all nearly optimal solutions are 
represented in grey. For the lower two panels, the interquartile range of nearly optimal 
solutions are represented in the grey boxes and  whiskers denote the complete range of 
values. 

If the system equilibrates between major barriers in the free-energy 
landscape, we expect that any change in barrier height can be 
compensated for by the appropriate change in the bond-formation rate 
(𝑘#) (Supplementary Figures 2a,b)—without effecting model 
predictions. Consequently, both quantities cannot be simultaneously 
determined in a partially equilibrated system, explaining the high 
variability of predicted barrier heights (Fig. 2a) and  𝑘# (Fig. 2c). By 
directly showing that the predicted binding and cleavage profiles are 
indeed insensitive to changing the barrier height (Supplementary 
Figures 2c and d), as long as the forward rate is appropriately adjusted, 
we confirm partial equilibration of the system. This insight both explains 
the high variance of free-energy estimates in barrier regions (Fig. 2a), 
and allows us to perform coarse-grain modeling of the system to isolate 
parameters that are well determined by the data. 

Based on the free-energy landscapes in Fig. 2a, we identified 
equilibrated states as those with free energies that are well-constrained 

by the fits. The equilibrated states are the effective states used in our coarse-grained model, and we calculate 
the coarse grained parameter values based on the estimated parameter values of the full model 
(Supplementary Information). We define the open (O) R-loop state as the PAM bound state.  The local 
minimum in Fig. 2a defines our coarse-grained intermediate (I) R-loop state with between 7 and 13 of its hybrid 
base pairs formed. Finally, the closed (C) R-loop and cleavage-competent state contains a fully formed hybrid. 
The resulting coarse-grained reaction scheme (Fig. 3a) captures the experimental data as well as the complete 
model (Supplementary Figure 3). This coarse-grained model reveals the rate-limiting steps during on- and off-
target DNA binding and cleavage.  

The rate-limiting step for on-target cleavage is the transition from the open to the intermediate R-loop state 
(𝑘+, ≪ 𝑘,-) (Figs. 3b-d). Complexes that enter the intermediate state also typically enter the closed state 
(𝑘,+ ≪ 𝑘,-). The transition between the open and the intermediate state is reversible because the free-energy 
difference between the open and intermediate state is low (resulting in 𝑘,+ ≈ 𝑘+,). The free-energy difference 
between the intermediate and closed state is high (𝑘,- ≫ 𝑘-,), rendering the transition from an opened to 
closed configuration essentially irreversible and all but guarantee cleavage (𝑘-, ≪ 𝑘$%&).  
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Mismatches between the target DNA and the sgRNA have differential effects on R-loop propagation. A PAM-
proximal seed mismatch (R-loop nucleotides 1-8) suppresses the rate of transition from an open to 
intermediate state (𝑘,+

!".&%/01& ≫ 𝑘,+2113	5.5.) (Figs. 3e-g).  In contrast, a PAM-distal mismatch (R-loop  

 

Fig. 3| Coarse-grained kinetic model fully captures bulk data. a, Coarse-grained version of the reaction scheme shown in Fig. 1a. Apart 
from the unbound and post-cleavage state, the targeting-reaction pathway is reduced to just three states (open, intermediate, and closed 
R-loops, see Supplementary Information for details). b, Microscopic free-energy landscape for the on-target exposed to 1nM (d)Cas9-
sgRNA (Fig. 2a) with coarse-grained states and rates indicated in green.  c, Coarse-grained forward and d, backward rates associated with 
the landscape in b. e, Microscopic free-energy landscape for an off-target with a mismatch at position 2 exposed to 1nM (d)Cas9-sgRNA 
(blue), together with the on-target free-energy landscape (pink). f, g, Coarse-grained forward (f) and backward (g) rates associated with 
the landscape in e.  h-j, Same as (f-g) for an off-target with a mismatch at position 15.  

nucleotides 12-17) limits the effective rate of cleavage from the open state by reducing the intermediate to 
closed state transition (𝑘,- ≪ 𝑘+,) (Figs. 3h-j). The transition from binding to the intermediate state remains 
unaffected, though returning to the open state competes with completion of the R-loop (𝑘,+ ≈ 𝑘,-). Enzymes 
that enter the closed state likely also proceed to cleavage (𝑘-, ≪ 𝑘$%&). We conclude that specificity in PAM-
distal regions (i.e., the second barrier in off-target landscape shown in Fig. 3h is higher than the first) is tuned 
not to interfere with the crucial on-target cleavage efficiency (i.e., second barrier in Fig. 3b is lower than the 
first).  
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R-loop propagation drives Cas9 conformation dynamics  
What are the structural properties of Cas9 that give rise to the non-monotonic free-energy landscape of Fig. 
2a? A comparisons between DNA-bound and unbound Cas9-sgRNA structures have revealed that Cas9 
repositions HNH and RuvC nuclease domains to catalyze cleavage44,53,54. We hypothesized that the position of 
the mobile HNH nuclease domain directly couples to R-loop progression, allowing it to influence its free-energy 
landscape. This hypothesis is based on the following key observations: First, ensemble FRET experiments49 
detected two dominant Cas9 conformers with distinct HNH states, and single-molecule FRET studies have 
identified a third intermediate conformer40,41,51—matching the number of R-loop states we find; Second, the 
relative position and occupancy of the HNH states is affected by R-loop mismatches40,41,51, while the Cas9 can 
only sense mismatches by hybridizing the sgRNA with the target DNA.  

Fig. 4| The time evolution of R-loop hybridization is 
reminiscent of conformational dynamics. a, The evolution 
of the occupation probability for any of the 23 microscopic 
states shown in Fig. 1a, as a function of time when 
interacting with the on-target. b, Same as a but when 
interacting with an off-target with last (PAM distal) 3 base 
pairs mismatched. c, Same as a but when interacting with 
an off-target with the last 4 base pairs mismatched. Colors 
indicate the corresponding coarse-grained R-loop 
configuration as defined in Fig. 3a: open R-loop and 
unbound states (blue), intermediate R-loop states (green) 
and cleavage-competent and post-cleavage states (orange). 

To test this hypothesis, we mimicked the 
experiments of Dagdas et al.40 by calculating the 
time evolution of the occupancy for each of the 
microscopic states in the DNA-bound Cas9 
landscape for three target sequences (Fig. 4).  
The HNH-domain completes its conformational 
change within seconds after Cas9-sgRNA binds 
to on-target DNA40. Our model demonstrates a 
similar behavior for R-loop progression (Fig. 4a). 
The intermediate R-loop state (green) is visited 
only transiently, while the closed state (red) 
strongly resists unwinding of the full hybrid 
(𝑘,- ≫ 𝑘-,)  (Figs. 3c, d and 4a). Compared to 
the on-target DNA, PAM-distal mismatches 
reduce the intermediate closure rate (𝑘,-) and 
increase the time spent in the intermediate 
state (Fig. 4b), in agreement with prior 
observations40. Our model also shows how 
going from three to four PAM distal mismatches 
effectively abolishes the occupancy of the 
closed state at short times40, as  R-loop 
formation is stalled in the intermediate state 
(Fig. 4c). In prior FRET experiments, the FRET 
value corresponding to the intermediate state 
depended on the number of mismatches 
introduced, which is evidence that the HNH 
domain adopts slightly different 
configurations41. The reported relationship 
between FRET values and mismatches is 
consistent with tight coupling of 
conformational change to R-loop progression in 
PAM distal regions, as our model predicts that 

going from three to four PAM-distal mismatches increases the probability of residing as a larger intermediate 
R-loop (Fig. 4). Taken together, we propose that the three coarse-grained R-loop states identified in our free-
energy landscape reflect the three HNH domain conformers. The free-energy landscape (Fig. 2 and 3) obtained 
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by fitting bulk data (Fig. 1) thus complements structural and single-molecule data to describe how Cas9 targets 
matched and mismatched DNAs. 

Kinetic modelling improves genome-wide off-target prediction 
Next, we sought to exploit our mechanistic description for predictive power, and compared our predictions 
with those of current state-of-the-art genomic off-target prediction tools. Current methods12,14,20,21,23–25,42 rank 
genomic off-targets according to various measures of in vivo activity without predicting biochemically 
measurable parameters (i.e., the binding affinity or cleavage rate). One such frequently-used tool computes 
the Cutting Frequency Determination (CFD) score12 —a naïve-Bayes classification scheme22 that assumes 
mismatches affect the relative cleavage probabilities multiplicatively. More recently, Zhang et al. presented a 
unified CRISPR (uCRISPR) score that outperforms the CFD score24. uCRISPR estimates the cleavage probability 
as proportional to the Boltzmann weight corresponding to the cleavage competent state. The assumption of a 
multiplicative effect errors and the use of Boltzmann weights both implicitly imply binding equilibrium. This 
assumption is not borne out by the experimental data as the off-target binding and cleavage patterns do not 
match (see e.g. Supplementary Figure 1a).  

 

 

Fig. 5| Genome-wide off-target classification. a, Precision recall-curves for our model (green) and predictions based on the CFD score 
(purple) or uCRISPR score (orange) for the EMX1 site using all experimentally identified off-targets. b, F1-scores for our model (green), CFD 
prediction tool (purple) and uCRISPR (orange), for target sites EMX1, FANCF, HBB, RNF2 and VEGFA site 1 using all experimentally identified 
off-targets. For each condition, the maximum obtainable F1-score along the corresponding PR-curve is displayed (see a and Supplementary 
Figure 4) 

To analyze whether our kinetic model improves genomic off-target predictions, we collected data from 
sequencing-based cleavage experiments. To comprehensively evaluate the model, we gathered data from all 
experiments that used industry-standard sgRNAs (i.e., targeting EMX1, FANCF, HBB, RNF2, and VEGFA) and 
reported multiple off-target cleavage sites33–36,38,39. Notably, these reports identified only partially overlapping 
sets of off-target cleavage sites, indicating that off-target cleavage detection is strongly dependent on 
experimental parameters (i.e., Cas9 nucleofection vs. plasmid transfection, exposure time, cell type, etc.) and 
the sensitivity of detection (i.e., enrichment of breaks or whole-genome sequencing)16,18. For each sgRNA, we 
separately tested against the union (sites found in any experiment) and intersection (sites found in every 
experiment) of the reported off-target sites (Fig. 5 and Supplementary Figures 4-6). The union of all reported 
off-targets maximizes the likelihood of covering low probability off-targets, while the intersection minimizes 
the effect of experiment-dependent biases and noise.  

We tested how well our model, the CFD score, and uCRISPR separate reported off-targets over the human 
genome. For sake of comparison, we need to collapse our dynamic description into a binary classification. We 
choose to separate out strong off-targets based on the predicted cleavage vs. unbinding probability once the 
Cas9-sgRNA has bound the PAM28, as this is proportional to the steady-state cleavage rate in the low 
concentration limit. To simplify the comparison further, we only considered sequences flanked by a canonical 
NGG motif. Fig. 5a shows the resulting precision-recall (PR) curve when tested against all reported off-targets 
of the EMX1 guide sequence (union). As the threshold for strong off-targets is swept, PR curves display the 
fraction of sites that are correctly labelled as off-target (precision) against the fraction of the experimentally-
identified sequences that are predicted (recall). For therapeutic genome-editing, a high recall is imperative as 
a false negative prediction is more harmful than a false positive one. Our kinetic model produces higher recall 
values for all achievable precisions, clearly outperforming state-of-the-art CFD and uCRISPR classifying schemes 
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for EMX1 (Fig. 5a). Importantly, the kinetic model also outperforms the leading off-target predictors for highly-
mismatched genomic off-targets of other sgRNAs, as judged by PR-curves, receiver operating characteristic 
curves, and the F1-score (Fig. 5 and Supplementary Figures 4-6). This result is especially surprising since the 
kinetic model was trained on datasets that captured, at most, two mismatches from a single on-target 
sequence. 

Discussion 
Here, we describe a kinetic model for Cas9 binding and cleavage that is trained on high-throughput in vitro 
measurements15. This bottom-up modelling approach has allowed us to decipher the microscopic free-energy 
landscape underlying SpCas9 target recognition (Fig. 1-2). Based on extracted free-energy landscapes, we find 
that SpCas9’s kinetics are dominated by transitions between the open, intermediate, and closed R-loop states 
(Fig. 3). As mismatches affect the three R-loop states similarly to the three configurational states of Cas9’s 
nuclease domains40,41, we propose that PAM distal R-loop formation is tightly coupled to protein conformation 
(Fig. 4)—pointing toward the relevant structure-function relation for the most important RNA-guided nuclease 
in use today. 

By mechanistically accounting for the kinetic nature of the targeting process, our model outperforms existing 
genome-wide off-target prediction tools. For simplicity and robustness, we built our model to exclude 
mismatch type parameters, allowing for extensive training using datasets based on a single guide sequence and 
off-target DNAs containing up to two mismatches. This training does not limit the model’s application as the 
model also improves on the detection of highly-mismatched genomic off-target sites (Fig. 5 and Supplementary 
Figures 4-6).  

Our model is also the first to fully capture the time dependence of off-target binding in addition to cleavage. 
Understanding the time dependence of off-target binding will facilitate the design of sgRNA libraries in Cas9- 
or dCas9-based experiments.  For example, a recent study by Jost et al.5 demonstrated that a series of 
mismatched guides can be used to titrate gene expression during CRISPRa/CRISPRi. Knowing SpCas9’s 
microscopic free-energy landscape (Figs. 2-3) can also simplify the design of CRISPRa/CRISPRi libraries for novel 
gene targets. Wildtype Cas9 can also be (effectively) inactivated with PAM-distal mismatches in the guide55, 
and our model can guide titration of Cas9-sgRNA inactivation.  

The physical insights generated by the free-energy landscapes we extract could also help rational protein-
reengineering efforts aimed at producing high-fidelity Cas9 variants that maintain high on-target 
efficiency39,51,56. For SpCas9, we find that the barrier between the intermediate and closed states is tuned to 
extend the cleavage specificity beyond the seed, without affecting on-target efficiency (Figs. 3b and h).  

Taken together, we have shown that mechanistic modelling combined with high-throughput data sets give 
biophysical insights into SpCas9 off-targeting, and that those insights give predictive power far beyond the 
training sets. SpCas9 is only one of many RNA-guided nucleases with biotechnological applications, and other 
CRISPR associated nucleases (such as Cas12a, Cas13 and Cas14) offer a diversified genome-engineering 
toolkit15,57–62. These nucleases can all be characterized with our approach, and it will be especially interesting 
to compare the free-energy landscape of our SpCas9 benchmark to that of engineered39,51,56 and natural  (e.g. 
N. meningitides Cas963) high-fidelity Cas9 variants. 
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