Metagenomic Discovery of CRISPR-Associated Transposons

James R. Rybarski*, Kuang Hu*, Alexis M. Hill*, Claus O. Wilke, Ilya J. Finkelstein (* co-first authors), BioRxiv (2021).
Full text
PDF
Supplement
DOI

Abstract

‘CRISPR-associated transposons (CASTs) co-opt Cas genes for RNA-guided transposition. CASTs are exceedingly rare in genomic databases; recent surveys have reported Tn7-like transposons that co-opt Type I-F, I-B, and V-K CRISPR effectors. Here, we expand the diversity of reported CAST systems via a bioinformatic search of metagenomic databases. We discover new architectures for all known CASTs, including novel arrangements of the Cascade effectors, new self-targeting modalities, and minimal V-K systems. We also describe new families of CASTs that have co-opted the Type I-C and Type IV CRISPR-Cas systems. Our search for non-Tn7 CASTs identifies putative candidates that co-opt Cas12a for horizontal gene transfer. These new systems shed light on how CRISPR systems have co-evolved with transposases and expand the programmable gene editing toolkit.’